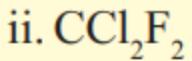
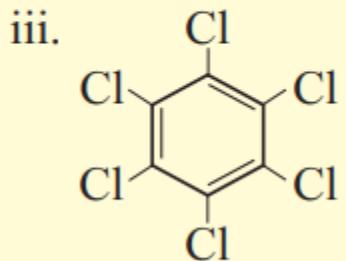
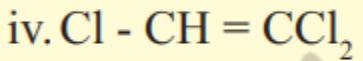
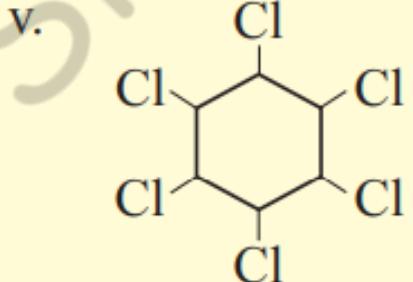


CHP. 10


Halogen Derivatives


Identify the functional group in the following compounds ?


(Benzyl bromide)

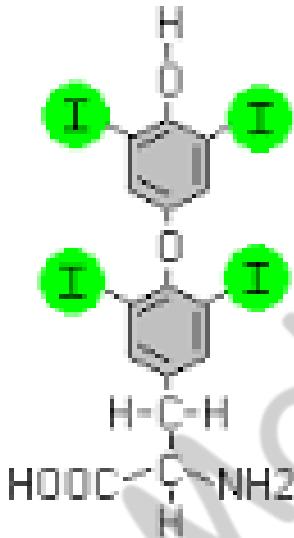
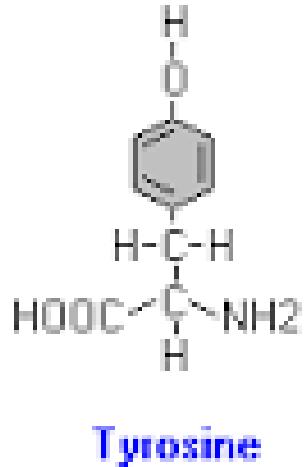

(Freon - 12)

(Hexachlorobenzene)

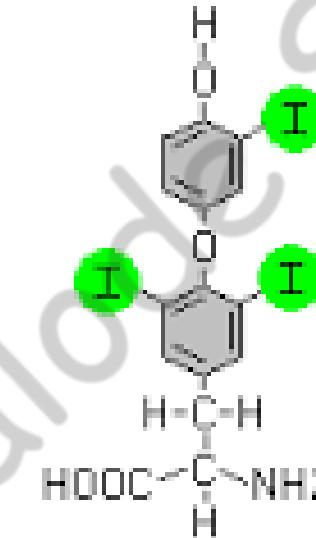
(Westrosol)

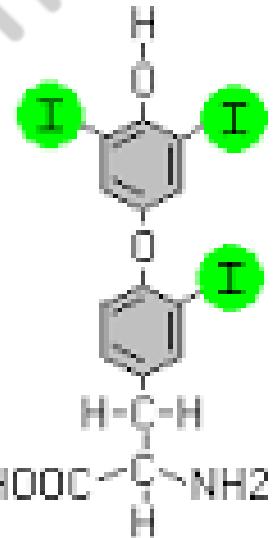
(Hexachlorocyclohexane)

Halogen Derivatives



The parent family of organic compounds is hydrocarbon.

Def


Replacement of hydrogen atom/s in aliphatic or aromatic hydrocarbons by halogen atom/s results in the formation of halogen derivatives of hydrocarbons


Find out the structures of two thyroid hormones T_3 (triiodothyronine) and T_4 (thyroxine). How do these help our body ?

Thyroxine (T4)

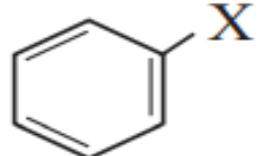
**Triiodothyronine
(T3)**

**"Reverse T3"
(inactive)**

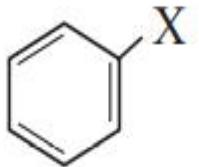
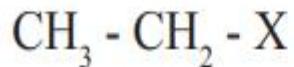
10.1 Classification of halogen derivatives :

Halogen derivatives of hydrocarbons are classified mainly in two ways

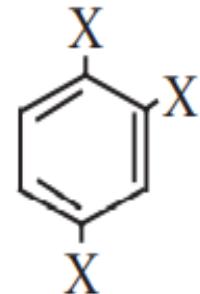
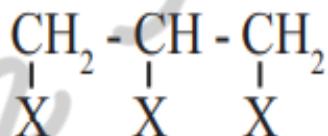
- a. On the basis of hydrocarbon skeleton to which halogen atom is bonded, the halogen derivatives are classified as


(Haloalkane)

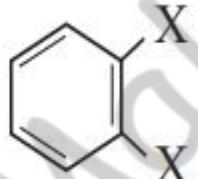
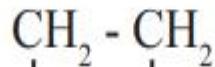
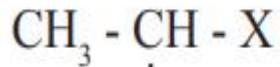
(Haloalkene)

(Haloalkyne)

(Haloarene)




b. On the basis of number of halogen atoms, halogen derivatives are classified as mono, di, tri or poly halogen compounds.

Monohalogen compounds

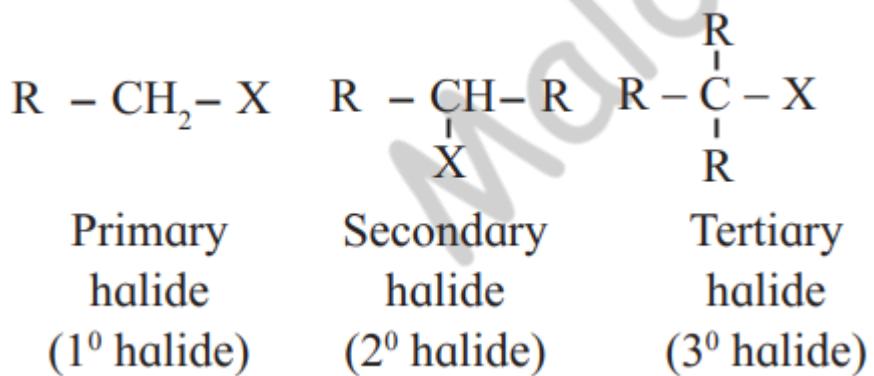
Trihalogen compounds

Dihalogen compounds

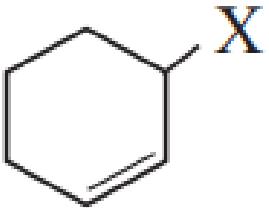
We will consider classification of mono halogen derivatives in more detail.

10.1.1 Classification of monohalogen compounds :

Monohalogen compounds are further classified on the basis **of position of halogen atom** and the **type of hybridization of carbon** to which halogen is attached

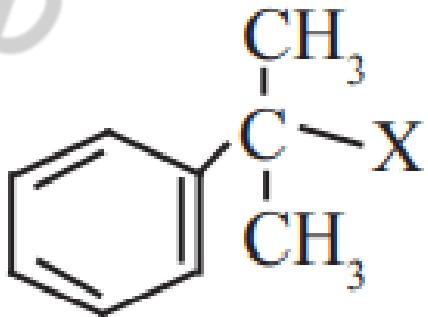
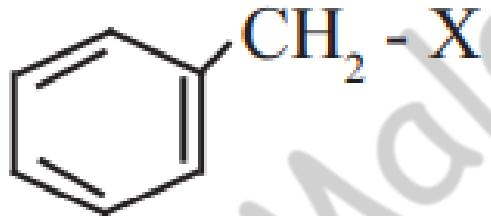

- a. Alkyl halides or haloalkanes :
- b. Allylic halides :
- c. Benzylic halide
- d. Vinylic halides :
- e. Haloalkyne :
- f. Aryl halides or haloarenes :

a. Alkyl halides or haloalkanes :


In alkyl halides or haloalkanes the halogen atom is bonded to sp³ hybridized carbon which is a part of saturated carbon skeleton.

Alkyl halides may be primary, secondary or tertiary depending on the substitution state of the carbon to which halogen is attached :

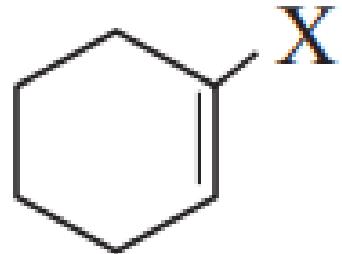
b. Allylic halides



: In allylic halides, halogen atom is bonded to a sp³ hybridized carbon atom next to a carbon-carbon double bond.

c. **Benzyllic halide :**

In benzylic halides halogen atom is bonded to a sp^3 hybridized carbon atom which is further bonded to an aromatic ring.

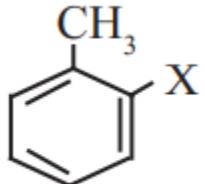
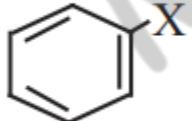
Structure of Benzylic halide



d. Vinylic halides

: In vinylic halides halogen atom is bonded to a sp² hybridized carbon atom of aliphatic chain.

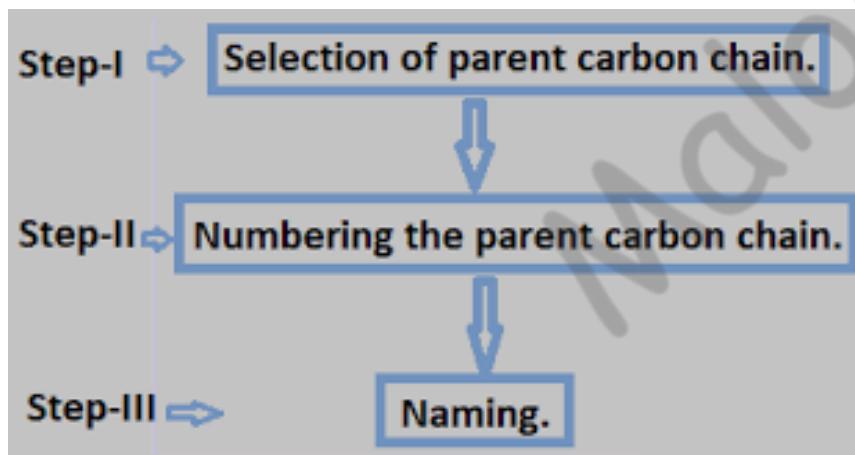
Vinylic halide is a haloalkene.



e. Haloalkyne

: When a halogen atom is bonded to a sp hybridized carbon atom it is a haloalkyne.

f. Aryl halides or haloarenes :

In aryl halides, halogen atom is directly bonded to the sp² hybridized carbon atom of aromatic ring.

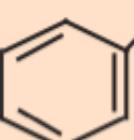


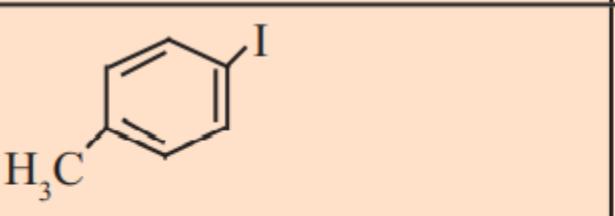
10.2 Nomenclature of halogen derivatives

alkyl halides are named as haloalkanes.

Aryl halides are named as haloarenes

Naming


Locant – Prefix – Parent – Suffix


Locant: Where are the substituents?

Prefix: What are the substituents?

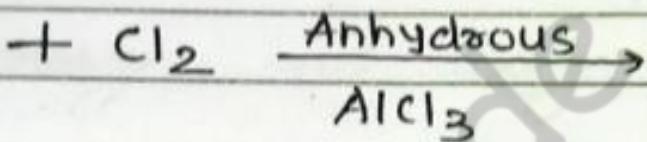
Parent: How many carbons?

Suffix: What is primary functional group?

Formula	Common name	IUPAC name
CH_2Cl_2	Methylene chloride	Dichloromethane
$\text{CH}_3\text{CH}_2\text{Br}$	Ethyl bromide	Bromoethane
$\text{CH}_3\text{CH}(\text{Cl})\text{CH}_3$	Isopropyl chloride	2-Chloropropane
$(\text{CH}_3)_2\text{CH} - \text{CH}_2\text{Br}$	Isobutyl bromide	1-Bromo-2-methylpropane
$(\text{CH}_3)_3\text{C Br}$	Tert-butyl bromide	2-Bromo-2-methyl-propane
$(\text{CH}_3)_3\text{C CH}_2\text{Cl}$	Neopentyl chloride	1-Chloro-2, 2-dimethyl propane
$\text{CH}_2 = \text{CH} - \text{Cl}$	Vinyl chloride	1-Chloroethene
$\text{CH}_2 = \text{CH} - \text{CH}_2\text{Br}$	Allyl bromide	3-Bromopropene
$\text{CH} \equiv \text{C} - \text{Cl}$	Chloro acetylene	Chloroethyne
CH_2I	Benzyl iodide	Iodophenylmethane

	p-Iodotoluene	1-Iodo-4-methyl benzene or 4-Iodotoluene
	m-dichlorobenzene	1, 3-dichlorobenzene

Can you recall ?


- In IUPAC system of nomenclature does the functional group 'halogen' appear as a suffix or prefix ?
- What are the trivial names of laboratory solvents CHCl_3 and CCl_4 ?

1. State Markownikoff's Rule.

2. Identify the product of the following reaction.

(i)

Benzene

(ii) Name the type of halide produced in the following reaction.

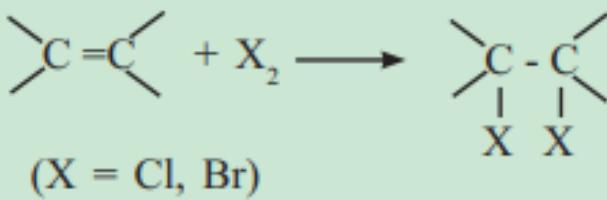
(iii) What type of reaction are shown by benzene.

Q. How will you prepare 1-bromobutane from 1-butene .

Malode Sir

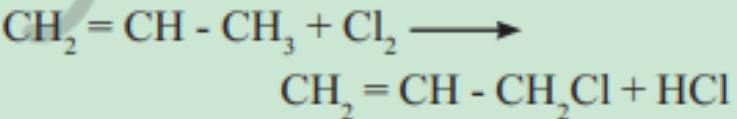
Q. How will you obtain 2-chloropropene from propane.

Malode Sir


Problem 10.1 : How will you obtain 1-bromo-1-methylcyclohexane from alkene? Write possible structures of alkene and the reaction involved.

Solution :

Do you know ?


Alkenes form addition product, vicinal dihalide, with chlorine or bromine usually in inert solvent like CCl_4 at room temperature.

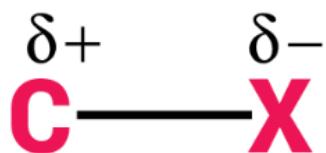
Do you know ?

When alkenes are heated with Br_2 or Cl_2 at high temperature, hydrogen atom of allylic carbon is substituted with halogen atom giving allyl halide.

10.4 Physical properties :

Physical properties of alkyl halides are considerably different from those of corresponding alkanes.

The boiling point of alkyl halides is determined by **polarity of the C-X bond** as well as the size of halogen atoms.


- 1 Nature of intermolecular forces
- 2 Boiling point
- 3 Solubility

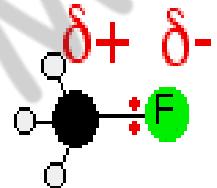
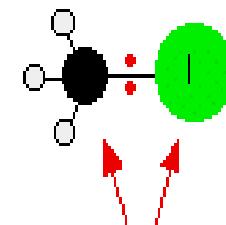
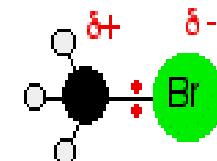
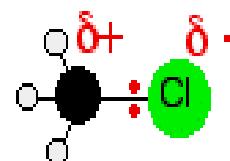
Malode Sir

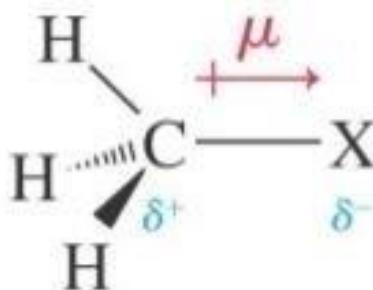
1 Nature of intermolecular forces

Halogens (X = F, Cl, Br and I) are more electronegative than carbon.

polar covalent bond

moderately polar compounds.


Table 10.2 : Bond parameters of C-X bond

Bond	Bond length/ (pm)	Bond enthalpy/ (kJ mol ⁻¹)	Dipole moment/ debye
CH ₃ - F	139	452	1.847
CH ₃ - Cl	178	351	1.860
CH ₃ - Br	193	293	1.830
CH ₃ - I	214	234	1.636

Dipole Moments

- Electronegativities of the halides:
 $\text{F} > \text{Cl} > \text{Br} > \text{I}$
- Bond lengths increase as the size of the halogen increases:
 $\text{C—F} < \text{C—Cl} < \text{C—Br} < \text{C—I}$
- Bond dipoles:
 $\text{C—Cl} > \text{C—F} > \text{C—Br} > \text{C—I}$
 $1.56 \text{ D} \quad 1.51 \text{ D} \quad 1.48 \text{ D} \quad 1.29 \text{ D}$
- Molecular dipoles depend on the geometry of the molecule.

Malode Sir

19. Among the following, the molecule with the highest dipole moment is _____.

[IIT JEE (Screening) 2003]

(A) CH_3Cl
(C) CHCl_3

(B) CH_2Cl_2
(D) CCl_4

2 Boiling point

Boiling points of alkyl halides are considerably **higher** than those of corresponding alkanes due to **higher polarity** and higher molecular mass

van der Waals force increases with **increase in size and mass** of halogen.

Thus boiling point of alkyl halide decreases in the order **RI > RBr > RCl > RF**

For example, :

Haloal-kane	CH_3F	CH_3Cl	CH_3Br	CH_3I
Boiling point (K)	194.6	248.8	276.6	315.4

boiling point rises with increasing carbon number

boiling point increases
With increase in
Molecular Weight

For example,

Haloalkane	Boiling point (K)
CH_3Cl	248.8
$\text{CH}_3\text{CH}_2\text{Cl}$	285.5
$\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl}$	320.0
$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Cl}$	351.5

For isomeric alkyl halides, boiling point **decrease** with increased branching as surface area decreases on branching and van der Waals forces decrease.

Haloalkane	Boiling point (K)
$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br}$	375
$\text{CH}_3 - \underset{\text{Br}}{\overset{ }{\text{CH}}} - \text{CH}_2 - \text{CH}_3$	364
$\text{CH}_3 - \underset{\text{Br}}{\overset{ }{\text{C}}} - \text{CH}_3$	346

3 Solubility

Haloalkanes are soluble in organic solvents but insoluble in water

Alkyl halides cannot form hydrogen bonds with water.

In addition to this, the attraction between alkyl halide molecules is stronger than attraction between alkyl halide and water

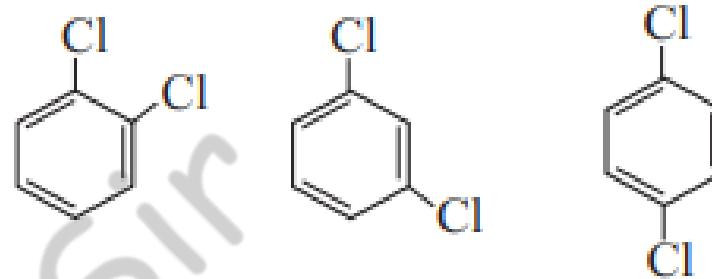
Alkyl halides are soluble in non-polar organic solvents

ii. Alkyl halides though polar are immiscible with water.

Ans :- i. Alkyl halides cannot form hydrogen bonds with water.

ii. In addition to this, the attraction between alkyl halide molecules is stronger than attraction between alkyl halide and water.

Hence, alkyl halides though moderately polar are immiscible with water

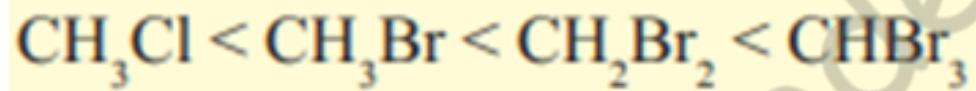


Aryl halides are also **insoluble in water** but soluble in organic solvents.

If aryl halides are not modified by presence of any other functional group, they show properties similar to corresponding alkyl halides.

The isomeric dihalobenzenes have nearly the same boiling points, but melting points of these isomers show variation.

Melting point of para isomer is quite high compared to that of ortho or meta isomer



b.p./K	453	446	448
m.p./K	256	249	323

This is because of its symmetrical structure which can easily pack closely in the crystal lattice. As a result intermolecular forces of attraction are stronger

Problem 10.2 Arrange the following compounds in order of increasing boiling points : bromoform, chloromethane, dibromomethane, bromomethane.

Arrange each set of compounds in order of increasing boiling points:

i. **Bromomethane, bromoform, chloromethane, dibromomethane.**

ii. 1-Bromopropane , Isopropyl bromide , 1-Bromobutane

Malode Sir

iii. 1-Chloropropane , Isopropyl chloride , 1-Chlorobutane

Malode Sir

The decreasing order of boiling points of alky halides is

[EAMCET 1980; CBSE PMT
1997; BHU 1999; AIIMS 20011]

1. $\text{RF} > \text{RCI} > \text{RBr} > \text{RI}$
2. $\text{RBr} > \text{RCI} > \text{RCI} > \text{RF}$
3. $\text{RI} > \text{RBr} > \text{RCI} > \text{RF}$
4. $\text{RCI} > \text{RF} > \text{RI} > \text{RBr}$

Arrange the following compounds in-decreasing order of their boiling points

[IIT JEE 2016]

- (i) CH_3Br
- (ii) $\text{CH}_3\text{CH}_2\text{Br}$
- (iii) $\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}$
- (iv) $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{Br}$

- (a) (i) > (ii) > (iii) > (iv)
- (b) (iv) > (iii) > (ii) > (i)
- (c) (i) > (iii) > (ii) > (iv)
- (d) (iii) > (iv) > (i) > (ii)