ASSIGNMENT PROBLENg

[ 12.1. INTRODUCTION ) -

As already discussed carlier, lincar programming relates to the problems concerning distributions of varioy
resourses (such as monev, machines, time ctc.), satisfying some constraints WhICf'l‘L.dn be dlg«,hralcally
I'his chapter deals wi,

represented as lincar equarions/inequalities so as (0 maximize profit or minimize cost. '
a very interesting method called the “Assignment Technigue' which is applicable to a class of very practicy)
problems generally called ‘Assignment problems’ o
The name “Assignment Problem’ originates from the classical problems where the objccuvc' 15 L0 assign 4
number of origins (jobs) to the equal number of destinations (persons) at a minimum cost (or maximum profit)
To examine the nature of assignment problem, suppose there are n jobs to be performed and n persons qgr,
available for doing these jobs. Assume that each person can do each job at a time, though with varying
degree of efficiency. Let c,; be the cost (payment) if the ith person is assigned the jth job, the problem is 1,
find an assignment (which job should be assigned to which person) so that the total cost for performing all

Jjobs is minimum. Problems of this kind are known as assignment problems.

Table 12-1
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Further, such types of problems may consist of assigning men to offices, classes to rooms, drivers to

trucks. trucks to delivery routes, or problems to research teams, etc. The assignment problem can be stated in

the form of 1 X n cost-matrix [c;;] of real number as given in Table 12-1.

Q. 1. Define Assignment Problem.
[IGNOU 2001, 99, 97, 96]

2. Whatis an assignment problem ?

\l2.2. MATHEMATICAL FORMULATION OF ASSIGNMENT PROBLEM
Mathematically, the assignment problem can be stated as :
Minimize the total cost : 7 = )':1‘, ﬁ cixii=1,2 n:i=12 n L(12-1)
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T ox;=1 L g
| K - (onejob is done by theith person, i =\ 5 n) (§2.3

n : . .
x;i=1 ’ _ :
.__;1 ij (only one person should be assignedthe jthjob,j=1,2, . .n) _(124)

' here x;jdenotes that jth job is to be assignéd to theith person.

| This special structure of assignment problem allows a ' ;
1 . . : more convenient in companso
| o simplex thod. method of solution in companison

' 122-1. Assignment Problem as S’pet:ial Case of Transportation Problem

The assignment problem (as defined in previous chapter) is seen to be the special case of transportation
problem when each origin is associated with one and only one destination. In such a case, m=n and the
mmerical evaluations of such association are called ‘effectiveness’ instead of ‘transportation costs’.
- Mathematically, all a; and b; are umity, and each x;; is limited to one of the two values O and 1. In such

circumstances, exactly n of the x;j can be non-zero (i. e. unity), one for each origin and one for each destination.



Example 1. A departmey,; head

UNIT . ASSIGNMENT PROBLEMS / 355
] ] ] our .

rdinates dtﬂ‘e{‘ " eﬂiglency and tqgk ¢ differ Subordiy, tes

ul;% rm each task is given in the ier in

el

effe €Cliveneg
nimize the total man-hoyy ?

A Y, and four tasks h d.
hei i s : ave to be performe

Smatyiy, Ho:v'?lm"m d'-ff"‘““)" Time each man would take to

[INTY 200 " ;" 1asks should b allocated to each person so as

+ 2000; Yamy, (ERODW) 97, |ag (Main) 93; Kerala B.Se.
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Solution. To understand the problem injtjy

«ep 1. Subtracting the sm
SEP ™ natrix [Table 12:3)
step 2. Next subtract the sm
step = second reduced m

) 10
lly . step by step solution procedure is necessary.
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Step - iqionment must be optimal by Theorem 12.2 of Section 12-3 . Zero assignment is possible
124 as follows :

i il a Tow containing
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A X . ; 01250,
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