Elements of Assembly Language Programming

Tuesday, January 18, 2022 3:17PM

SYSTEM SOFTWARE
O

Screen clipping taken: 1/19/2022 2:08 PM

01101101 vDeui (e Jivers

— Assembler —- gocd o.

Screen clipping taken: 1/19/2022 2:58 PM

Screen clipping taken: 1/19/2022 2:09 PM

Screen clipping taken: 1/19/2022 2:11 PM

2. Assemblers Page 1

Screen clipping taken: 1/19/2022 2:11 PM

Screen clipping taken: 1/19/2022 2:12 PM

Screen clipping taken: 1/19/2022 2:13 PM

Elements of As
_Programming

2. Assemblers Page 2

Screen clipping taken: 1/19/2022 2:13 PM

Screen clipping taken: 1/19/2022 2:14 PM

. .
Simple set of instructions

STOP Execution

Addition

Subtraction

rPMultiplication

Move memory to Register
Move Register to Memory
Comparision

Branch on condition
Division

Reading

Screen clipping taken: 1/19/2022 2:17 PM

. .
Simple set of instructions

Screen clipping taken: 1/19/2022 2:19 PM

2. Assemblers Page 3

www!BANDICAMYcom

Simple set of instructions

For every BC instruction operand field is having 07 values :-

EQ — Equal To (03)

LT — Lower Than (01)

GT — Greater Than (04)

LE — Lower Than or Equal To (02)

GE — Greater Than or Equal To (05)

NE — Not Equal (07)

ANY — Unconditional Control transfer (06)

Screen clipping taken: 1/19/2022 2:20 PM

Screen clipping taken: 1/19/2022 2:21 PM

Screen clipping taken: 1/19/2022 2:22 PM

2. Assemblers Page 4

ypical assembly language program

O

es of assembly language statements
O
-1An assembly language program contains three kind

of statements :-
(. Imperative statements
>. Declarative statements
3. Assembler directives

JAn assembly language program contains three kind
of statements :-

1. Imperative statements

Screen clipping taken: 1/19/2022 2:26 PM

Screen clipping taken: 1/19/2022 2:27 PM

Screen clipping taken: 1/19/2022 2:29 PM

2. Assemblers Page 6

SYSTEM SOFTWARE

Screen clipping taken: 1/19/2022 2:38 PM

Screen clipping taken: 1/19/2022 2:39 PM

2. Assemblers Page 7

Assembler

Monday, January 24, 2022 10:27 AM

Assemblers

Assembler: Definition

= Translating source code written in assembly
language to object code.

lo] | anqua '
ASSGe pos achine cole

Source Program
= Mnemonic opcode - Assembler - Object code

- Symbol

Language Levels

Hardware

Machine code

* Machine code:

— Set of commands directly executable via CPU
— Commands in numeric code
— Lowest semantic level

wachine cde il be 1n the g of O's & 9
e 1V bivar fgvm

2. Assemblers Page 8

Machine code language

¢ Structure:
— Operation code
* Defining executable operation
— Operand address

* Specification of operands
-G

fregister addi 7 ge addresses

2/1/2022 11:00 AM

Elements of the Assembly Language

Ass gwm bley 1
Programming———

* An Assembly language is a
— machine dependent, -

— low level Programming language specific to a certain
computer system.

Three features when compared with machine language
are

1. Mnemonic Operation Codes _,
2. Symbolic operands ./
3. Datadeclarations

Elements of the Assembly Language
Programming

Mnemonic operation codes: eliminates the need to memorize
numeric operation codes.

Symbolic operands: Symbolic names can be associated with
data or instructions. Symbolic names can be used as operands
in assembly statements (need not know details of memory
bindings).

Data declarations: Data can be declared in a variety of
notations, including the decimal notation (avoids conversion
of constants into their internal representation).

Assembly language-structure

|<Label> |<Mnemomic> || <Operand> | Comments ‘

* Label

— symbolic labeling of an assembler address
{command address at Machine level)
* Mnemomic
— Symbolic description of an operation
* Operands

2. Assemblers Page 9

7D
Y T

_@mﬁ/ev

o
/A SJFMb}j /"’3‘4‘1) e

%
A ssembley 2

m/c rye 2
32 Lit C 4 4it
\/
AH 4w >0 vard g
\—

/ <

V) '

TIemonics = < Jobley poidern s
ASS 4o — }’)P//yy)e—
YC’W'E’Mb(-r/hj SOMP‘I’L)

/
4 [50

T
| :

;'V'_j

HDPC

Assembly language-structure

‘|<I.abel> [<Mnemomic> || <Operand> | Comments ‘

* Label

— symbolic labeling of an assembler address
{command address at Machine level)

* Mnemomic

— Symbolic description of an operation
* Operands

— Contains of variables or addresse if necessary
* Comments

AREA

[T] \M@m

Statement format AREAYS =2 location ¢ m erony yord

An Assembly language statement has following

format: chich)S S s Ay o
[Label] <opcode> <operand spec>[,<operand spec>..] /q RE P

If a label is specified in a statement, it is associated as a

symbolic name with the memory word generated for the /’\ R€ /]_\ (4:) __37[\ EC/_] \/allﬁ e/ﬁg’p,}(;j /b

statement. o
7 oddaess T 47 Jhlex
<operand spec> has the following syntax: l\ﬂ ' "91546’7 Nurbe,) Iste~

<symbolic name> [+<displacement>] [(<index register=)]

ijQﬂ Tfjl;q@v S RcYe
AREA > /@
PREA(D = poa Sg= b7

Eg. AREA, AREA+5, AREA(4), AREA+5(4)

Mnemonic Operation Codes

* Each statement has two operands, first operand is always a register
and second operand refers to a memory word using a symbalic

name and optional displacement.

Instruction Assembly Remarks !
apcode mnemaonic (D)’ﬂ / h)
00 STOP Stop execution p U’ﬂ -S, / (C 7]70 71}7(7 —}—I (01/ VV)/C_
o ADD First operand is modi fied
g§ iuuf.r Condition code is set / D A gea B ARE (4 R
B e 3|
o B mmmm Sy
g :é:n } Analogous to SUB K P SJ) + 'y)
10 FRINT First operand is not used 0 (Ayrv
VD e o 0 bt < ynetlos _
. Flags >esuly = %
Operation Codes a— > 5
= MOVE instructions move a value between a memory word and
aregister
- Mrg?/‘ZR— First operand is target and second operand is source , .-{:
« MOVEM — first operand is source, second is target) ((0\/17![-\'\'0\/1)

AS

« All arithmetic is performed in a register (replaces the contents T j ” — —
of a register) and sets condition code. l —_— ’ L‘—
= AComparision instruction sets condition code analogous to

arithmetics, i.e. without affecting values of operands. =
e \se AN
= 7

= condition code can be tested by a Branch on Condition (BC) \N"IP oy g 7

instruction and the format is:
BC <condition code spec> , <memory address>

2. Assemblers Page 10

= condition code can be tested by a Branch on Condition (BC) ' uw
instruction and the format is: JJ P —
BC <corimwd_espec> , <memory address>

Machine Instruction Format

D[[]Ui]ll

sign opcode reg memory
operand operand

* sign is not a part of the instruction

* Opcode: 2 digits, Register Operand: 1 digit, Memory
Operand: 3 digits

* Condition code specified in a BC statement is encoded
into the first operand using the codes 1- 6 for
specifications LT, LE, EQ, GT, GE and ANY respectively

* |na Machine Language Program, all addresses and constants
are shown in decimal as shown in the next slide

Example: ALP and its equivalent Machine

Language Program
P'\Vwe\\yr'\om(s PAEEs orevw/ 7" ofexary
—START 101 »
S N ~T |101) +090 113
MOVER BREG, ONE 102) +0421i15
b\ MOVEN BREG, TERK 103) + 05 Z ii6
_O\ A4 H AGAIN - MULT BREG, TERN 2104) + 03 27116¢
— —= " MOVER CREG, TERM TOB) + 04 3 116
ADD CREG, ONE 106) + 01 3 {15
MOVEM CREG, TERM 107) + 05 3 116
COMP CREG, N 108) + 06 3 113
BC LE, AGAIN 109) + 07 2 104/
MOVEM BREG, RESULT 110) +oszn¥-
PRINT I 111) + 1001
ﬁ 1 12) +‘o‘o°5%’c?n'
N T 1 ~5113)
REsuLr DS T V/%Tﬁ'
OE DC ‘1’ _____—1—P115) + 00 0 001
TERK DS 1 | 116)
T END L

A ose \D\j \O\Y’D\A"\){ memm'ﬂSS

?70‘3\50\ (8]
Assembly Language Statements

* An assembly program contains three kinds of
statements:

w Imperative Statements \/
» Declaration Statements
» Assembler Directives \/

/imperative Statements: They indicate an actiori to be 7[\ PD PREQ ,))\IE
Each imperative statement is translated into one machine
instruction. —
v—/_

Assembly Language Statements ., 1 /.
/) S

2. Assemblers Page 11

@s-9-7 -
Z5-9-71

»F)o/)

1.
K MO!(IAIV))(AV)jljlaj €

)736 9fam

Assembly Language Statements . 1 ..

* Declaration Statements: syntax is as follows: jtowJ N 72 b
[Label]l DS <constant> 3
[Label] DC '<value>' 1< b

- mDS(deoM)ﬂatemerﬂmmemaymdassodat&mwih

: Doy 0N (ids vo e Sev - A wrvd - Vou yuch strvase

- Ex —> W/c dependent

_A DS 1 ;reserves a memory area of 1 word, associating the name Ato it

G DS_200 ; reserves a block of 200 words and the name G is associated with the q

first word of the block (G+6 efc. to access the other words)

- The DC (declare constant) statement constructs memory words containing 15 260
constants. ord
- Ex:

ONE DC '1’'; associates name one with a memory word containing value 1
2.8 — e

Assembly Language Statements ;-2 <

(onxtant
Use of Constants
* The DC statement does not really implement constants
e s ety TR TS,
= it just initializes memo i S.

* The values are not protected by the assembler and can
be changed by moving a new value into the memory

by executing an instruction o NE
MOVEM BREG, ONE
b A

word.
« Inthe above example, the value of ONE can be changed \
b

15

Assembly Language Statements

Use of Constants

» AnAssembly Program can use constants just like HLL, in
two ways — as immediate operands, and as literals.

« 1) Immediate operands can be used in an assembly
statement only if the architecture of the target machine
includes the necessary features.

— Ex: ADDAREG,5

= (ow s+ ant
/

— This is translated into an instruction from two operands — AREG and
the value 'S’ as an immediate operand

Assembly Language Statements

Use of Constants
= 2)Aliteralis an operand with the syntax = '<value>'.
« |t differs from a constant because its location cannot be

specified in the assembly program.
= |ts value does not change during the execution of the

nranram

2. Assemblers Page 12

« It differs from a constant because its location cannot be
specified in the assembly program. —

= |ts value does not change during the execution of the
program.

« |t differs from an immediate operand because no
architectural provision is needed to support its use.

ADD AREG =% > ADD AREG, FIVE
BVESRDC 5
Use of literals vs. Useof DC

Assembly Language Statements

Assembler Directive

« Assembler directives insiruct the assembler to perform certain
actions during the assembly of a program.

« Some assembler directives are described in the following:
1) START <constant.—3 g0/ | Pewry frea
< This directive indicates that the first word of the target program
generated by the assembler should be placed in the memory
word having address <constant>.

2)END [<operand spec>]-© P11
. }T\hi:directivle indicat;og ﬂleer\dmgfﬁreofﬂt‘r;ea%%uroe ; ram.
optional <operand spec> indicates ress of
instruction where the execution of the program should begin.

Advantages of Assembly Language

=« The primary advantages of assembly language
programming over machine language programming
are due to the use of symbolic operand specifications. OAl ¢
-_/—'_,___’—' ——— >
(in comparison to machine language program) PY
SUse aJJw»@ 2
= Assembly language programming holds an edge over
HLL programming in situations where it is desirable to
use architectural features of a computer. __; Suome Arch |+p<4q;e 3]
(in comparison to high level language program) s { f"""S Sorz @ specir!
instrchivr ohich cap
speed up exprutin

Fundamentals of LP— Languay, 20ce ssiry

* Language processing = analysis of source program
+ synthesis of target program
* Analysis of source program is specification of the
source program
— Lexical rules: formation of valid lexical units(tokens) in
the source language
— Syntaxrules : formation of valid statementsin the
source language
— Semantic rules: associate meaning with valid (6] r(J'l G“lVY’r
statements of the language /

- profit () ok oY) fost - price

‘.(}{n/\\"ﬁe’/) Cvstant

2. Assemblers Page 13

YU (S

Fundamentals of LP

= Synthesis of target program is construction of
target language statements
— Memory allocation : generation of data structures
in the target program
— Code generation

A simple Assembly Scheme

* There are two phases in specifying an assembler:
1. Analysis Phase

2. Synthesis Phase(the fundamental information
requirements will arise in this phase)

A simple Assembly Scheme
Design Specification of an assembler mq\CI'y,J a teo W

There are four steps involved to design the specification
of an assembler:

i} Identify information necessary to perform a task.
7,) Design a suitable data structure to record info.

39 Determine processing necessary to obtain and maintain
the info.

4} Determine processing necessary to perform the task

Synthesis Phase: Example Meve Vdue at oddwess /ib}'WLPJ by ONE +o

Consider the following statement:)3 "T'P_ﬂ (’ }j 'I'PY
MOVER BREG, ONE
\/?he following info is needed to syiithesize machine instruction for this
stmt:

1. Address of the memory word with which name ONE is assodiated
[depends on the source program, hence made available by the
Analysis phase].

2. Machine operation code corresponding to MOVER [does not
depend on the source program but depends on the assembly
I hence hesis phase can d ine this infor i
for itself]

Note: Based on above discussion, the two data structures required
during the synthesis phase are described next

Data structures in synthesis phase
1) Symbol Table Mbythcanalysisphase\/ Sjm b()} —}—q-é}p B /~) n”’/_)a_ﬂ 5

2. Assemblers Page 14

Udid strucuures Iin synunesis pnase

_/[>SymbolTable g o i Sjm }DO} —)-OLI)IC _ /—) n”’{jjl_‘f

— The two primary fields are name and address of the symbol used to specily a value.
Mnemonics Table —already present
The two primary fields are mnemonic and opcode, along with length.

—_—

Synthesis phase uses these tables to obtain
— The machine address with which a name is associated. e
— The machine op code corresponding toa i i \/

The tables have to be searched with the
— Symbol name and the mnemonic as keys

—_—

Analysis Phase - -t/ BM,\J Sym bo | ‘)’mb}Q

* Primary function of the Analysis phase is to build the
symbol table.

— Tt must determine the addresses with which the symbolic names 10 80
used in a program are associated

— Itis possible to determine some addresses directly like the
address of first instruction in the program (ie.,start)

— Other addresses must be inferred

— To determine the addresses of the : symbolic names we need to
fix the addresses of all program elements preceding it through

Memory Allocation.

* To implement rrwm)_’rullcxﬁati?n a data structure |G 000
called location counter is introduced. cLC] -

Pttt
Analysis Phase — Implementing memory
Y. allocation N
LC(location counter) : ™ |
— is always made to contain the address of the next memory word in) 4__’9,),// S

— ltis initialized to the constant specified at the START statement.
= When a LABEL is encountered, L
- itmtﬁsmmmmwm\tsoﬂxina new entry of the
symbol table.
LABEL — e.g. N, AGAIN, SUM etc
— It then finds the number of memory words required by the
assembly statement and updates the LC contents

* To update the contents of the LC, analysis phase needs to know
lengths of the different instructions

— This information is available in the Mnemonics table and is extended
with a field called length -

= We refer the processing involved in maintaining the LC as LC
Processing

2. Assemblers Page 15

Example

START 100
MOVER BREG, N LC= 100-/ (1 byte)
MULT BREG, N LC=101 (1 byte)
STOP LC=102 (1byte)
N DS 5./ 1C=103—~
Pl
N 103

= Since there the instructions take different
amount of memory, it is also stored in the
mnemonictable in the “length” field

Mnemonic \ Opcode Length
MOVER 04 5
MuLT 03 1
Data ofan bl
During analysisand
Symml is ph Mnemonic \Opcode ‘Iength
ADD o1 1
SUB 02 1
MnemonicTable
ik
Source d 5 Targe_t
Program ————— Program
Pl —_—
Symbal Address
A N 104 2
— > Control Access
AGAIN 113
Symbol Table
—

Data structures

* Mnemonics table is a fixed table which is >
merely accessed by the analysis and synthesis \/] /V} /
phases

= Symbol table is constructed during analysis
and used during synthesis

Tasks Performed : Analysis Phase

2. Assemblers Page 16

Tasks Performed : Analysis Phase

Isolate the labels, mnemonic, opcode and operand fields
of astatement. — @~

If a label is present, enter (symbol, <LC>} into the symbol
table.

QW &

table. [—

Update value of LC.

C

* Check validity of the mnemonic opcode using mnemonics

Tasks Performed : Synthesis Phase -

Obtain machine opcode corresponding to the mnemonic from
the mnemonic table.

obtain address of the memory operand from symbol table.
P, it —_——

Synthesize a machine instruction or machine form of a
constant, depending on the instruction.

Assembler’s functions

@ Convert mnemonic operation codes to their

machine language equivalents
=3 Convert symbolic operands to their equivalent
machine addresses
@ Build the machine instructions in the proper
format
@ Convert the data constants to internal
machine representations

g < Write the object program and the assembly
listing

Assembler:Design

e The design of assembler can be of:
— Scanning (tokenizing)
— Parsing (validating the instructions)
— Creating the symbol table \/
— Resolving the forward references
— Converting into the machine language %

Assembler Design

* Pass of a language processor— one complete
scan of the source program

2. Assemblers Page 17

o

[

—a_llrt’_,laj\ﬁ—

Mewioni(Yable v

GPcode — M/c code

ASSemb)j)ﬂhjw'@f’ . abed ade

P

JY Grar 7 /W/([arguage /ngm

ass —1 S‘Iﬂﬂf S(dY’/T’P@J/'Vm A Lho

Assembler Design

* Pass of a language processor— one complete D
scan of the source program /

» Assembler Design can be done in:
V4 Single pass
~ Two pass

N SingTEﬁtss Assembler:
\ova Does everything insingle_p’m,_s_
'\)’Y@Q %Cannot resolve the forward referencing
* Two pass assembler:
— Does the work in two pass v/

— Resolves the forward references

ass -1 S‘I'n])(’ S(‘”’/’V@@’/if)j o—F -}-L,p

SOMY(Ce /hfaj 70

Difficulties: Forward Reference

* Forward reference: reference to a label that is
defined later in the program.

Loc Label Operator Operand
1000 FIRST STL RETADR

Backpatching - usel g havdlo/resshe the /7yob/pm o
’FNCua\YA Wf@’?re}’)ce

* The problem of forward references is handled
using a process called backpatching

— Initially, the operand field of an ion containing 5
aforward reference’is ank st vcT A
— Ex: MOVER BREG, ONE can be only partially data sTUTA
synthesized since ONE is a forward reference

b':dzm”jf " /(7 T1-Table of Ina@mplete Inshrctiy

— To insert the second operand’s address later, an entry
is added as Table of Incomplete Instructions (TlI)

— The entry Tll is a pair (<instruction address>,
<symbol>) which is (101, ONE) here

Instrichitn addses

—; la4

Backpatching

The problem of forward references is handled using a
process called backpatching

et © 1D Asionbey divedtie

program
— So Tll would contain information of all forward references
— Now each entry in Tll is pr d to lete the i

— Ex:the entry (101, ONE} would be pmcss.ed by obtaining the
address of ONE from e and inserting it in the
operand field of the instruction with assem ess 101,

— Alternatively, when definition of some symbol Lis encountered,
all forward references to L can be

2. Assemblers Page 18

Advanced Assembler Directives

* 1. ORIGIN

— This directive is like START instruction. which indicates
address of the next consecutive instruction or data. LC _ LO (o —})' gn (oUh J’f Y

— Format of this statement is as follows

— ORIGIN <address spec=>

— <address spec> may be operand or constant. symbol ¢ mbol or
symbolic expression.

— This directive indicates that L L.Sh.ﬁulﬂ.b.&sﬂ%s
given by <address spec>

— The ORIGINWirectivelisuseful wWhen the machine code is not
stored in consecutive memory location.

— ORIGIN provides ability to perform LC processing in relative

manner rather than absolute manner
s

————]
—
S
l—

Advanced Assembler Directives

» 1. ORIGIN 1

» ORIGIN in Relative manner & \o0f - 20 — np4 D
ORIGIN LOOP +2 7 = (Qo01 ¥ =1

* e LC\(\Y *

« MULT CREG, B - /Lo L\

+ here LC at LOOP is 202, than now LC will set-to
location 204-and the address of machine code for
MULT B will become 204

* The statement LAST+1 sets LC to location 217

+ Equivalent effect can be achieved by using statement
ORIGIN 204 and ORIGIN 217, however absolute
addresses used in these statements would needed be
changed if the address specification of START
statement is changed.

Sr. no. | Assembly program LC
1 START 100
2 LOOP MOVER BREG="2' @
3 MOVER AREG,N 101 i
0
4 \ ADD AREG="1' 102 é Yo —(—\Y\é gud d\r)ﬂ\lff)b 6] SjYV) b)
l * G
5 _ORIGINLOOE. ——— | 5)@(\q+pJ h LooP "
6 NEXT BC ANY,LOOP

Advanced Assembler Directives
« 2.EQU

- ~is_vmty:-;.k§U <address spec>
- Ex:AEQU

— Address of B is assigned to

in symbol table.

is directive simply associate the name <svmbol> with <
¢ ssociate the name <Symoor
address spec>.
—_—t
~ where <address spec> may be constant or operand.
~ The EQU statement is defers from the DC/DS statement as no
Pt ol o

LC processing is implied

Advanced Assembler Directives
+ 2.LTORG
. LTORG

2. Assemblers Page 19

Advanced Assembler Directives

* 2. LTORG
—_—
— LTORG

Lite~als
= o7 Litew

— This directive allocates memory to all literals of current pool
and update literal table. pool table

~ Format of this instruction is as follows

~ LTORG.

— IFLTORG statement is not present. literals are placed afler
the END statement. —

1 START 200
2 MOVER AREG, =°‘S5’ 200) +04 1 211
3 MOVEM AREG, A 201) +05 1 217
4 LOOP MOVER AREG, A 202) +04 1 217
5 MOVER CREG, B 303y +05 3 218
g
g _.l_t_lD CREG, =1° 204) +01 3 212
12 BC ANY, NEXT 210) +07 6 214
13 LTORG
='5" =) 211} +00 O 005
-y® 212) +00 0 001
14 —_
15 NEXT SUB AREG, ='1" 214) +02 1 219
16 BC LT, BACK 218) +07 1 202
17 LAST STOP 216) +00 O 000
18 ORIGIN LOOP+2
19 MULT CREG, B:——ﬁzm) +03 3 218
20 ORIGIN LAST+1
21 A = 1T 17
22 BACK EQU LOOP
23 B ps 1 218)
24 END
25 mrys 218) +00 O 001

ASSEMBLY PROGRAM ILLUSTRATING ORIGIN AND LTORG

* The LTORG statementpermits-programmer to specify

where literal should be placed. by default assembler

places literals after end statement

At Every LTORG statement, as also at END statement

The assembler allocates memaory to the literals of the

literal pool. The pool contains all literals used in the

program since start of program or start of LTORG

statement.

* in Program of previous slide , literals ‘=5" and ‘=1’ are
added to literal pool with addresses 211 and 212

* A new literal pool now started and value ‘=1 is putin
to this pool in statement 15. this value is allocated at
address 219 of second pool of literals rather than
location 213 of first pool

Assembler Design

Symbol Table:
This is created during pass 1
— All the labels of the instructions are symbols
Table has entry for symbol name, address value.
» Forward reference:

Symbols that are defined in the later part of the
program are called forward referencing.

— There will not be any address value for such symbols
in the symbol table in pass 1.

2. Assemblers Page 20

Assembler Design

= Assembler directives are pseudo instructions.
They provide instructions to the assemblers itself.

— They are not translated into machine operation
codes.

Assembler Design

= First pass:
Scan the code by separating the symbol, mnemonic
op code and operand ficlds
— Build the symbol table
— Perform LC processing
— Construct intermediate representation
» Sccond Pass:
— Solves forward references
— Converts the code to the machine code

Two Pass Assembler

* Read from input line

— LABEL, OPCODE, OPERAND
Source ‘
P“l!_.lfl!

BT e T

Data Structures in Pass |

* OPTAB - a table of mnemonic op codes
— Contains mnemonic op code, class and mnemaonicinfo
= Class field indicates whether the op code corresponds to
* animperative statement (I5),
+ adedaration statement {DL) or
= an assembler Directive (AD)
— For 15, mnemonic info field contains the pair (machine
opcode, instruction length)
— Else, it contains the id of the routine to handle the
declaration or a directive statement
— The routine processes the operand field of the statementto
determine the amount of memory required and updates LC
and the SYMTAB entry of the symbol defined

2. Assemblers Page 21

Data Structures in Pass |

SYMTAB - Symbol Table
— Contains address and length
LOCCTR - Location Counter

LITTAB - a table of literals used in the program

— Contains literal and address

— Literals are allocated addresses starting with the

current value in LC and LC is incremented,
appropriately

OPTAB (operation code table)

Content

— Menmonic opcode, class and mnemonic info
Characteristic

— static table

Implementation
— array or hash table, easy for search

SYMTAB (symbol table)
* Content
— label name, value, flag, (type, gg';
length) etc. g
* Characteristic ENDAL
— dynamic table (insert, delete, ES:EE
search) ZERO
* Implementation i

— hash table, non-random keys, BUFFER
hashing function ciih

2. Assemblers Page 22

1000
1000
1003
1015
1024
1020
1030

1033
1036
1039
2039

