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Did You Know?

The Kénigsberg bridge problem

The Seven Bridges of Konigsberg is a notable historical problem in Mathematics. Its negative

resolution by Leonhard Euler in 1735 laid the foundations of Graph theory. The city of Konigsberg
in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two
large islands which were connected to each other and the main land by seven bridges.
The problem was to find a walk through the city that would cross each bridge only once. The
islands could not be reached by any route other than the bridges, and every bridge must have been
crossed completely every time (one could not walk half way onto the bridge and then turn around
and later cross the other half from the other side).

Euler proved that this problem has no solution.
To start with, Euler pointed out that the choice of route inside each land mass is irrelevant.
The only important feature of a route is the sequence of bridges crossed. This allowed him to
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reformulate the problem in abstract terms (laying the foundations of Graph theory), eliminating
all features except the list of land masses and the bridges connecting them. In modern terms,
one replaces each land mass with an abstract "vertex" or node, and each bridge with an abstract
connection, an "edge", which only serves to record which pair of vertices (land masses) is connected
by that bridge. The resulting mathematical structure is called a graph.

Present state of the bridges

Two of the seven original bridges were destroyed by bombs during World War II. Two others
were later demolished and replaced by a modern highway. The three other bridges remain, although
only two of them are from Euler’s time (one was rebuilt in 1935). Thus, there are now five bridges
in Konigsberg (modern name Kaliningrad).

Applications

Applications of Graph theory are primarily, but not exclusively, concerned with labelled graphs
and various specializations of these. Structures that can be represented as graphs are ubiquitous, and
many problems of practical interest can be represented by graphs. The link structure of a website
could be represented by a directed graph: the vertices are the web pages available at the website
and a directed edge from page A to page B exists if and only if A contains a link to B. A similar
approach can be taken to problems in travel, biology, computer chip design, and many other fields.
The development of algorithms to handle graphs is therefore of major interest in computer science.
There, the transformation of graphs is often formalized and represented by graph rewrite systems.
They are either directly used or properties of the rewrite systems(eg. confluence) are studied.

A graph structure can be extended by assigning a weight to each edge of the graph. Graphs
with weights, or weighted graphs, are used to represent structures in which pair wise connections
have some numerical values. For example, if a graph represents a road network, the weights could
represent the length of each road. A digraph with weighted edges in the context of Graph theory is
called a network.

Networks have many uses in the practical side of Graph theory, network analysis (eg., to model
and analyze traffic networks). Within network analysis, the definition of the term "network" varies,
and may often refer to a simple graph.

Many applications of graph theory exist in the form of network analysis. These split broadly
into three categories:

1. First, analysis to determine structural properties of a network, such as the distribution of
vertex degrees and the diameter of the graph. A vast number of graph measures exist, and the
production of useful ones for various domains remains an active area of research.

2. Second, analysis to find a measurable quantity within the network, eg., for a transportation
network, the level of vehicular flow within any portion of it.

3. Third, analysis of dynamical properties of networks.

Graph theory is also used to study molecules in chemistry and physics. In condensed matter
physics, the three dimensional structure of complicated simulated atomic structures can be studied
quantitatively by gathering statistics on graph-theoretic properties related to the topology of the
atoms. Eg., Franzblau’s shortest-path (SP) rings. In chemistry a graph makes a natural model for a
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molecule, where vertices represent atoms and edges bonds. This approach is especially used in
computer processing of molecular structures, ranging from chemical editors to database searching.

Graph theory is also widely used in sociology as a way, eg., to measure actors’ prestige or to
explore diffusion mechanisms, notably through the use of social network analysis software.

Likewise, Graph theory is useful in biology and conservation efforts where a vertex can repre-
sent regions where certain species exist (or habitats) and the edges represent migration paths, or
movement between the regions. This information is important when looking at breeding patterns
or tracking the spread of disease, parasites or how changes to the movement can affect other species.
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0.2 Syllabus
6'" SEMESTER
BSCMTC 359 PAPER 8
(Special Paper — 8a)
GRAPH THEORY
UNIT -1:

Definition of a graph, Konigsberg bridge problem. Finite and infinite graphs, incidence and
degree, isolated vertex, pendant vertex and null graph, isomorphism, sub graphs, walks, paths, cir-
cuits, connected graphs, components. Euler graphs, operation on graphs. Euler graph. Hamiltonian
paths and circuits. Trees: properties, pendant vertices, Distance and centre, rooted and binary tree.
Spanning trees, Fundamental circuits.

UNIT -2:

Cut sets, properties, cut sets in a graph. Fundamental cut sets and circuits. Connectivity and
separability. Kurotowski’s two graphs. Different representation of planar graphs, Detection of
planarity, Geometrical dual.

UNIT -3:

Vector spaces of a graph: Sets with one operation, with two operations. Modular arithmetic
and Galois fields — Recapitulation. Vectors and vector spaces, vector space associated with a graph.
Basis vectors of a graph. Circuit and cut set subspaces, orthogonal vectors and spaces. Incidence
matrix, submatrices of A(G), Circuit matrix. Fundamental circuit and rank. Cut set matrix. Path
matrix, adjacent of matrix.

UNIT -4:
Chromatic number, chromatic partitioning, chromatic polynomial coverings.
UNIT -5:

Directed graphs, definition, types of digraph, binary relations and directed paths and connected-
ness. Euler digraphs, trees and digraphs. Fundamental circuits in digraphs, matrices A, B, C of
digraphs, adjacency matrix of a digraph.

A graph consists of vertex set (whose elements are called vertices or points or nodes or junctions)
and edge set (whose elements are called edges or lines or arcs or branches), such that each edge is
identified with an unordered pair of vertices .
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0.3 Definitions

{v1,v2,v3,.....} (Whose elements are called vertices or points or nodes or junctions)
and edge set E = {e},e,e3,.....} (whose elements are called edges or lines or arcs or

Definition 0.3.1 — GRAPH. A graph G = (V,E) consists of vertex set V =
branches), such that each edge ¢ is identified with an unordered pair of vertices (v;,v;).

0.4 Remarks

p) The vertices, v;,v; associated with an edge e, are called the end vertices of ¢;.

p) The vertex set V of G is denoted by V(G) and the edge set of G is denoted by E(G).

p) The most common representation of a graph by means of a diagram, in which the vertices are
represented as points (dots) and each edge as a line segment joining its end vertices.

p) Ifavertex v; is associated with an edge e, then ey is said to be incident on v;.

p) Every edge is incident on two vertices [they are the end vertices of the edge].

R) A linear graph means a graph.

p) There is no non-linear graph.

0.5 Konigsberg Bridge Problem
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In 1736, Euler wrote the first paper in graph theory. Two islands C and D, formed by the Pregel
river in Konigsberg city (was the capital of East Prussia, USSR but now renamed Kaliningrad of
West Soviet Russia), were connected to each other and to the banks A and B with seven bridges as
shown in the diagram. The problem was to start at any of the 4 land areas of the city ( A, B, C or
D), walk over each of the 7 bridges exactly once and return to the starting point.

p) The Konigsberg Bridge Problem is often said to have been birth of graph theory.

p) The originator of the Graph Theory — Leonhard Euler (1707 - 1783).

Euler proved that this problem has no solution. He has replaced each land area by a point and
each bridge by a line joining these points as follows: The Konigsberg bridge problem is same as the
problem of drawing the adjacent figure without lifting the pen/pencil from the paper and without
retracing any line and return to the starting point.

£

0.6 Four Colour Problem

(posed in 1852, solution found in 1976): states that any map on a plane or on the surface of a
sphere can be coloured with four colours in such a way that no two adjacent countries have the
same colour.

This problem can be translated as a graph theory problem, by representing each country as a
point and join the points by a line if the countries are adjacent. The problem is to colour the points
in such a way that adjacent points have different colours.
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Definition 0.6.1 — FINITE AND INFINITE GRAPHS. A graph is said to be finite if it has
finite number of vertices and finite number of edges, otherwise it is called an infinite
graph.

Finite graph with 7 vertices Infinite graph

Definition 0.6.2 — SELF LOOP. If an edge is associated with a vertex pair (v;,v;), then it
is called a self loop.

Definition 0.6.3 — PARALLEL EDGES. If two or more edges are associated with same
vertex pair, then such edges are called parallel (or multiple) edges.

Definition 0.6.4 — SIMPLE GRAPH. A graph which has neither a self loop nor parallel
edges is called a simple graph.

Definition 0.6.5 — MULTIGRAPH. A graph is said to be a multigraph if it contains some
parallel edges but no self-loops.

Definition 0.6.6 — PSEUDOGRAPH. A graph is said to be pseudograph if it contains
self-loop or parallel edges.

Examples:

Simple graph Multigraph Pseudograph
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Definition 0.6.7 — INCIDENCE. If v; is an end vertex of an edge e, then v; and ¢; are
said to incident on one another.

p) Two non-parallel edges are said to be adjacent if they are incident on a common vertex.

p) Two vertices are said to be adjacent if they are the end vertices of the same edge.

Definition 0.6.8 — DEGREE OF A VERTEX. The number of edges incident on a vertex
v;, with self-loop counted twice, is called the degree of the vertex v; and is denoted by

deg(v;) ord(v;).
Consider the graph G:
£
Y U,
£y
b
e €4 €2 .
€7
o “ Uy
1. e is the self loop.
2. e4 and es are the parallel edges.
3. e and ey are adjacent whereas e3 and e;are not adjacent.
4. v, and v4 are adjacent whereas v, and vsare not adjacent.
5. deg(vi) =3, deg(v2) =4, deg(v3) =3, deg(v4) =3, deg(vs) =1

n
p) If Gisagraph with ‘n’ vertices and ‘e’ edges, then Zdeg(vi) =2e
i=1

Theorem 0.6.1 The number of vertices of odd degree in a graph is always even.

n
Proof. Let G be a graph with ‘n’ vertices and ‘e’ edges. Then, we have Z deg(v;) = 2e

i=1
— ) deg(vi)+ Y. deg(v;) =2e

odd even

degree degree
vertices vertices
= Z deg(vi) =2e — Z deg(v;) = Even number
odd even
degree deg(ee
vertices vertices

Since deg(vy) is odd, the total number of terms in the sum must be even in order that LHS is
even.
.". There must be an even number of odd vertices in G. [ |
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Theorem 0.6.2 The maximum number of edges in a simple graph G with n vertices is

nin—1)
5

Proof. Let G be a simple graph with n vertices vy, v, V3, ....... V.
Since G is simple graph, we have d(v;) < (n—1) Vi.

2e =

n
deg(v;), where e is the number of edges in G.

2¢<) (n—1) cdvi) < (n—1)

nn—1)

i.e., the maximum number of edges in G is >

Theorem 0.6.3 The maximum degree of any vertex in a simple graph with n vertices is n — 1.

Proof. A simple graph neither contains self loop nor multiple loop.

So, in the worst case it will be connected with all the vertices other than itself in the graph. In that
case its degree will be n — 1. Every other cases will make its degree less than n — 1.

So the degree of any vertex in a simple graph of n vertices cannot exceed n — 1.

.". The maximum degree of any vertex in a simple graph with n vertices is n — 1. |

Definition 0.6.9 — REGULAR GRAPH. A graph, in which all the vertices are of equal
degree, is called a regular graph.

Examples:
o] O/D f
o o I
o @] O\D CV
o
O-regular graph 1-regular graph 2-regular graph 3-regular graph
with 6 vertices with 6 vertices with 6 vertices with 6 vertices

Definition 0.6.10 — ISOLATED VERTEX. A vertex having no incident edge is called an
isolated vertex.

R) Anisolated vertex is a vertex with degree zero.
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1
Definition 0.6.11 — PENDANT VERTEX. A vertex which has only one incident edge on
it is called a pendant vertex (or leaf).

p) The degree of a pendant vertex is one.

Example: In the following graph, v4 and v; are isolated vertices and v3 is a pendant vertex.

9 Uy

[ 1

U
1 v

Definition 0.6.12 — EDGES IN SERIES. Two adjancent edges are said to be in series if
their common vertex is of degree 2.

J| Definition 0.6.13 — NULL GRAPH. A graph without any edges is called a null graph.

p) Every vertex in a null graph is an isolated vertex.

Examples:

| ]
®
®
® [ ]
® @ °
®
n=2 n=3 n=4

Definition 0.6.14 — ISOMORPHISM. Two graphs G and G’ are said to be isomorphic to
each other if there is a one-to-one correspondence between their vertices and edges such
that the incidence relationship is preserved.

p) Two graphs G and G are said to be isomorphic to each other if G and G’ contain

1. equal number of vertices.
2. equal number of edges.
3. equal number of vertices with a given degree.
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Examples:
Graph G Graph H An isomorphism
i i between G and H
flay=1
fio)=6
fic)=8
flay=3
flg)=5
fim=2
=4
)=7
e U
4 Yy = Uy
e
5 2 )
e
c f 2 s 6
b 6 3
. Y < vy
W
u
L < & " i A g
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vertices and all the edges of g are in G and each edge of g has the same end vertices in g

I Definition 0.6.15 — SUBGRAPH. A graph g is said to be a subgraph of G if all the
asin G.

Every graph is its own subgraph.

A subgraph of a subgraph of G is a subgraph of G.

A single vertex in a graph G is a subgraph of G.

A single edge in G, together with its end vertices, is also a subgraph of G.

e e

Definition 0.6.16 — WALK. A walk (or edge-train or chain) is defined as a finite alter-
nating sequence of vertices and edges beginning and ending with vertices such that each
edge is incident on vertices preceding and following it.

p) Inawalk, no edge can appear more than once but vertices can appear any number of times.

R) A walk which begins and ends in the same vertex is called a closed walk.

R A walk, in which the end vertices are different, is called an open walk.

Example:
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®
Uy h Us

In Figure, viavobvicvidvsev, fvs is a walk.

Definition 0.6.17 — PATH. An open walk in which no vertex appears more than once is
called a path.

R ) A path does not intersect itself.

p) The number of edges in a path is called the length of a path.

p) The terminal vertices of a path are of degree one and the rest of the vertices (are called
intermediate vertices) are of degree two.

Example:

Y

(& 5 a
i

d f F3
Uy h Vg

In Figure, viav, bvidvy is a path, but viavo bvicvidvsev, fvs is not a path.

Definition 0.6.18 — CIRCUIT. A closed walk in which no vertex (except the initial and
the final vertices) appears more than once is called a circuit.

R) A circuit is a closed, non-intersecting walk.
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Examples:

In Figure, v bvsdvaev, is a circuit.

J

Cpen walk Cgen walk Closed walk Closet walk
which |s a path which |s not a path which |s a clrcult which Is ngt a clrcult.

to be connected if there is at least one path between every pair of vertices in G, otherwise

I Definition 0.6.19 — CONNECTED AND DISCONNECTED GRAPHS. A graph G is said
G is disconnected.

p) A null graph of more than one vertex is disconnected.

Definition 0.6.20 — COMPONENT. A disconnected graph consists of two or more
connected subgraphs. Each of these connected subgraphs is called a component.

Disconnected graph with 2 components
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Theorem 0.6.4 A graph is disconnected iff its vertex set V can be partitioned into two disjoint
subsets V| and V, such that there exists no edge in G whose one end vertex is in V; and the other
in V2.

Proof. Suppose that such a partitioning exists.

Consider two arbitrary vertices a and b of G, such thata € V; and b € V.

No path can exist between vertices a and b. Otherwise, there would be at least one edge whose one
end vertex would be in V; and the other in V5.

Hence, if a partition exists, G is not connected.

Conversely, let G be a connected graph.

Consider a vertex a in G. Let V| be the set of all vertices that are joined by paths to a.

Since G is disconnected, V| does not include all vertices of G. The remaining vertices will form a
(non-empty) set V,. No vertex in V] is joined to any vertex in V; by an edge. Hence the partition. W

Theorem 0.6.5 If a graph (connected or disconnected) has exactly two vertices of odd degree,
then there must be a path joining these two vertices.

Proof. Let G be a graph with all even vertices except vertices v; and v, which are of odd degree.
Which holds for every graph and therefore for every component of a disconnected graph, no graph
can have an odd number of odd vertices.

.. In graph G, the vertices v; and v, must belong to the same component and hence must have a
path between them. |

Theorem 0.6.6 A simple graph (i.e., a graph without parallel edges or self-loops) with n vertices
(n—k)(n—k+1)

and k components can have at most edges.

2
Proof. Let the number of vertices in each of the kK components of a graph G be ny,ny,ns, ...... N
Thus we have ny +ny +n3+...... +ny =n where n; > 1.

The proof of the theorem depends on an algebraic inequality

(gl

(n; — 1) = n—k, squaring both sides ,

2
(i — 1)) = 1+ 12— 2nk

—

~—
(o

(n? — 2n;) + k+ non-negative cross terms = n* + k> — 2nk - (n; — 1) > 0 , for all i.

o
=
.M»

Il
_

2 <n?+ k% —2nk—k+2n=n>—(k—1)(2n—k)

01~
S
=

Il
_

n?—(k—1)(2n—k)

,M»N »
< .
=N

IN

Il
—_

Now the maximum number of edges in the /" component of G (which is a simple connected
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Definition 0.6.21 — EULER GRAPH. If some closed walk in a graph contains all the
edges of the graph, then the walk is called an Euler line and the graph is called an Euler
graph

OR

A closed walk running through every edge of the graph G exactly once is called Euler
line and a graph having Euler line is called Euler graph.

Theorem 0.6.7 A given connected graph G is an Euler graph if and only if all vertices of G are
of even degree.

Proof. Suppose that G is an Euler graph therefore it contains an euler line (which is a closed walk).
In tracing this walk we observe that every time the walk meets a vertex v it goes through two "new"
edges incident on v with one we "entered" v and with the other "exited".This is true not only of all
intermediate vertices of the walk but also of the terminal vertex because we "exited" and "entered"
the same vertex at the beginning and of the walk, respectively. Thus if G is an Euler graph, the
degree of every vertex is even.

To prove the sufficiency of the condition, assume that all vertices of G are of even degree. Now
we construct a walk starting at an arbitrary vertex v and going through the edges of G such that
no edges is traced more than once. We continue tracing as far as possible. Since every vertex is
of even degree . we can exit from every vertex we enter; the tracing cannot stop at any vertex but
v. And since v is also of even degree, we shall eventually reach v when the tracing comes to an
end. If this closed walk & we first traced includes all the edges of G, G is an Euler graph. If not, we
remove from G all the edges in & and obtain a subgraph /' of G farmed by the remaining edges.
Since both G and & have all their vertices of even degree, the degrees of the vertics of /4’ are also
even. Moreover, 4/’ must touch h at least at one vertex a, because G is connected. Starting from a,
we can again construct a new walk in graph /. Since all the vertices of 4’ are of even degree, this
walk in 4/ must terminate at vertex a; but this walk in 4’ can be combined with 4 to form a new
walk, which starts and ends at vertex v and has more edges than /4. This process can be repeated
until we obtain a closed walk that traverses all the edges of G . Thus G is an Euler graph. |

Konigsberg Bridge Problem:

Looking at the graph of the Konigsberg Bridge, we find that not all its vertices are of even degree.
Hence, it is not an Euler graph. Thus it is not possible to walk over each of the seven bridges
exactly once and return to the starting point.
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m Example 0.1 The walk, which includes all the edges of the graph and does not retrace any edges,
is not closed. The initial vertex is a and the final vertex is b. We shall call such an open walk that
includes (or traces or covers) all edges of a graph without retracing any edge a unicursal graph.

It is clear that by adding an edge between the initial and final vertices of a unicursal line we shall
get an Euler line. A connected graph is unicursal if and only if it has exactly two vertices of odd
degree. "

Examples:

Two Euler graphs

& d
Unicursal graph

Theorem 0.7.1 In a connected graph G with exactly 2k odd vertices , there exist k edge- disjoint
subgraphs such that they together contain all edges of G and that each is a unicursal graph.

Proof. Let the odd vertices of the given graph G be named v, vy, ...vg; Wi, Wy, ...wg in any arbitrary
order. Add k edges to G between the vertex pairs (vi,wy), (va,w2), ..., (Vk, wx) to form a new graph
G.

Since every vertex of G’ is of even degree, G’ consists of an Euler line p. Now if we remove from
p the k edges we just added (no two of these edges are incident on the same vertex), p will be split
into k walks, each of which is unicursal line: The first removal will leave a single unicursal line;
the second removal will split that into unicursal lines; and each successive removal will split a
unicursal line into two unicursal lines, until there are k of them. Thus the theorem. [ |

Definition 0.7.1 — OPERATIONS ON GRAPHS. The union of two graphs G| = (V},E})
and G, = (V,,E;) is another graph G3 (written as Gz = G |JG2) whose vertex set
Vs =V UV, and the edges E3 = E| UE);. The intersection G; N G, of graphs G and G,
is a graph G4 consisting only of those vertices and edges that are in both G; and G .
The ring sum of two graphs G and G, (written as G| @ G») is a graph consisting of the
vertex set V) UV, and of edges that are either in G| or G5, but not in both.
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Examples:

. |

Yy
=
d ¢
U4 f U5
G
l
Y, Vo h Vs
“ b
v
v v 2 {
2 ¢ 3 U
d
()
) v
oY 4 f 5
G, NG, GDG,

Definition 0.7.2 — DECOMPOSITION. A graph G is said to have been decomposed into
two subgraphs g; and g, if g1 Ug» = G and g1 N g» = a null graph.

p) A graph containing m edges {e1,e2,...,e,, } can be decomposed in 2m=1 _ 1 different ways
into pair of subgraphs g1, g2.

Definition 0.7.3 — DELETION. Ifv; is a vertex in graph G, then G —v; denotes a subgroup
of G obtained by deleting (i.e, removing) v; from G.

Deletion of a vertex always implies the deletion of all edges incident on that vertex.

If e is an edge in G, then G — e is a subgraph of G obtain by deleting €j from G.
Deletion of an edge does not imply deletion of its end vertices.

.‘.G—ej = G@ej-
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Example:

G (T =) ":_-?,r}

d

Vertex deletion and Edge deletion.

(merged) if the two vertices are replacd by a single new vertex such that every edge that
was incident on either a or b or on both is incident on the new vertex. Thus fusion of two

Definition 0.7.4 — FUSION. A pair of vertices a,b in a graph are said to be fused
vertices does not alter the number of edges, but it reduces the number of vertices by one.

Example:

Fusion of vertices a and b.

Theorem 0.7.2 A connected graph G is an Euler graph if and only if it can be decomposed into
circuits.

Proof. Suppose graph G can be decomposed into circuits; that is, G is a union of edge- disjoint
circuits. Since the degree of every vertex in a circuit is two, the degree of every vertex in G is even.
Hence G is an Euler graph.

Conversely, let G be an Euler graph. Consider a vertex v;. There are at least two edges incident
at vy. Let one of these edges be between v and v,. Since vertex v, is also of even degree, it must
have at least another edge, say between v, and v3. Proceeding in this way, we eventually arrive
at a vertex that has previously been traversed, thus forming a circuit I'. Let us remove I from G.
All vertices in the remaining graph (not necessarily connected) must also be of even degree. From
the remaining graph remove another circuit in exactly the same way as we removed I from G.
Continue this process until no edges are left. Hence the theorem. |
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is defined as a closed walk that traverses every vertex of G exactly once, except at the

Definition 0.7.5 — HAMILTONIAN CIRCUIT. A Hamiltonian circuit in a connected graph
starting vertex, at which the walk also terminates.

Examples:

W @
»

Definition 0.7.6 — HAMILTONIAN PATHS. If we remove any one edge from a Hamilto-
nian circuit, we are left with a path. This path is called a Hamiltonian path.

p) Hamiltonian path in a graph G traverses every vertex of G.

p) Since a Hamiltonian path is a subgraph of a Hamiltonian circuit (which is a subgraph of
another graph), every graph that has a Hamiltonian circuit also has a Hamiltonian path.

p) The length of a Hamiltonian path (if it exists) in a connected graph of n vertices is n — 1.

Definition 0.7.7 — COMPLETE GRAPH. A simple graph in which there exists an edge
between every pair of vertices is called a complete graph.

Example:

— A AR

Complete graphs of two, three, four and five vertices.

R) A complete graph with n vertices is denoted by K;,.



0.7 Konigsberg Bridge Problem: 23

Rp) Since every vertex is joined with every other vertex through one edge, the degree of every
vertex is n — 1 in a complete graph G of n vertices.
n(n—1)
7

.. The total number of edges in a complete graph G with n vertices is

[ [| Definition 0.7.8 — TREE. A tree is a connected graph without any circuits.

R) A treeis a simple graph having neither a self-loop nor parallel edges (because they both form
circuits).

p) Aleafis a vertex of degree 1.

Examples:

Tree with 11 vertices.

Y

Trees with one, two, three and four vertices.

Theorem 0.7.3 There is one and only one path between every pair of vertices in a tree T.

Proof. Since T is a connected graph, therefore there must exist at least one path between every pair
of vertices in 7. Now suppose that between two vertices a and b of there are two distinct paths.
The union of these two paths will contain a circuit and 7' cannot be a tree. |

Theorem 0.7.4 If in a graph G there is one and only one path between every pair of vertices, G
is a tree.

Proof. Existence of a path between every pair of vertices assures that G is connected.

A circuit in a graph (with two or more vertices) implies that there is at least one pair of vertices a, b
such that there are two distinct paths between a and b.

Since G has one and only one path between every pair of vertices, G can have no circuit.

.. Gis atree. |
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Theorem 0.7.5 A tree with n vertices has n — 1 edges.

Proof. The theorem will be proved by induction on the number of vertices.
It is easy to see that the theorem is true for n = 1,2 and 3. Assume that the theorem holds for all
trees with fewer than n vertices.

Let us now consider a tree T with n vertices. In T let e, be an edge with end vertices v; and v;.
According to the well-known Theorem, there is no other path between v; and v; except e. .".,
Deletion of ¢; from T will disconnect the graph, as shown in Figure. Also, T — e consists of exactly
two components, and since there were no circuits in 7" to begin with, each of these components is a
tree. Both these trees, ; and #,, have fewer than n vertices each, and therefore, by the induction
hypothesis, each contains one less edge than the number of vertices in it. Thus T — e; consists of
n—?2 edges (and n vertices). Hence has exactly n — 1 edges.

“x

=9

Tree T with n vertices.

Theorem 0.7.6 Any connected graph with n vertices and n — 1 edges is a tree.

Proof. Let G be a connected graph with n vertices and n — 1 edges. We show that G contains no
cycles. Assume to the contrary that G contains cycles. Remove an edge from a cycle so that the
resulting graph is again connected. Continue this process of removing one edge from one cycle at
a time till the resulting graph H is a tree. As H has n vertices, so number of edges in H is n — 1.
Now, the number of edges in G is greater than the number of edges in H. Son—1 > n— 1, which
is not possible. Hence, G has no cycles and therefore is a tree. |

Definition 0.7.9 — MINIMALLY CONNECTED GRAPH. A graph is said to be minimally
connected if removal of any one edge from it disconnects the graph.

Rp) A minimally connected graph has no cycles.
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Theorem 0.7.7 A graph is a tree if and only if it is minimally connected.

Proof. Let the graph G be minimally connected. Then G has no cycles and therefore is a tree.
Conversely, let G be a tree. Then G contains no cycles and deletion of any edge from G disconnects
the graph. Hence G is minimally connected. |

Theorem 0.7.8 A graph G with n vertices, n — 1 edges, and no circuits is connected.

Proof. Suppose there exists a circuitless graph G with n vertices and n — 1 edges which is discon-
nected. In that case G will consist of two or more circuitless components. Without loss of generality,
let G consist of two components, g; and g,. Add an edge e between a vertex v, in g; and v; in g5.

-.E| gj

Edge added to G = g1 U g».

Since there was no path between v; and v, in G, adding e did not create a circuit. Thus GUe is a
circuitless, connected graph (i.e., a tree) of n vertices and n edges, which is not possible, because
we know that A tree with n vertices has n — 1 edges. |

R) A graph G with n vertices is called a tree if one of the statements is true:

G is connected and is circuitless.

G is connected and has n — 1 edges.

G is circuitless and has n — 1 edges.

There is exactly one path between every pair of vertices in G.
G is a minimally connected graph.

Nhwn =

Theorem 0.7.9 In any tree (with two or more vertices), there are at least two pendant vertices.

Proof. Let the number of vertices in a given tree T be n (where n > 1). So the number of edges in
T is n— 1. Therefore the degree sum of the tree is 2(n — 1). This degree sum is to be divided among
the n vertices. Since a tree is connected it cannot have a vertex of 0 degree. Each vertex contributes
at least 1 to the above sum. Thus there must be at least two vertices of degree exactly 1. |

Definition 0.7.10 — DISTANCE IN A TREE. In a connected graph G, the distance d(v;,v;)
between two of its vertices v; and v; is the length of the shortest path (i.e., the number of
edges in the shortest path) between them.
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Examples:

d(a,b) =1, d(a,c) =2, d(a,d) =2, d(b,d) =1, d(c,d) =2

iof

Some of the paths between vertices v; and v are (a,e), (a,c, f), (b,c,e),b, f),(b,g,h) and (b,g,i,k).
There are two shortest paths, (a,e) and (b, f), each of length two. Hence d(vy,v2) = 2.

Definition 0.7.11 — METRIC. A function d(u,v) is said to be a metric if it satisfies the
following three conditions:

1. Non-negativity: d(u,v) > 0 and d(u,v) =0 iff u = v.

2. Symmetry: d(u,v) =d(v,u).

3. Triangle inequality: d(u,v) < d(u,w)+d(w,v) for any w.

Theorem 0.7.10 The distance between vertices of a connected graph is a metric.

Proof:
Let G be a connected graph and d(u, v) be the distance between vertices of a connected graph, with
u and v being vertices of G.

1. Non-negativity: Clearly, d(u,v) > 0 and d(u,v) =0 iff u = v.

2. Symmetry: d(u,v) = d(v,u) because the length of the shortest path from u to v is same as

the length of the shortest path from v to u.

3. Triangle inequality: For any vertices u,v,w in G, we have d(u,v) < d(u,w)+d(w,v).

Hence, by definition, d(u,v) is a metric.

Definition 0.7.12 — ECCENTRICITY OF A VERTEX. The eccentricity E(v) of a vertex v
in a graph G is the distance from v to the vertex farthest from v in G.
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Examples:

Eccentricities of the vertices of a tree.

Definition 0.7.13 — CENTER. A vertex with minimum eccentricity in graph G is called
a center of G.

Examples:

E(a)=2,E(b) = 1,E(c) = 2,E(d) =2

Since minimum eccentricity is 1, therefore center of a graph is b.

Rl

.
;"//—

Eccentricities of the vertices of a tree.
Since minimum eccentricity is 2, therefore there are two centers of a graph.
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Theorem 0.7.11 Every tree has either one or two centers.

Proof:
The maximum distance, max d(v,vi), from a given vertex to any other vertex v; occurs only when
v; is a pendant vertex.

ik
x|
|-||

Consider a tree having more than two vertices.

Then Tree must have two or more pendant vertices (By known theorem).

Delete all the pendant vertices from 7. The resulting graph 7" is still a tree. The removal of all
pendant vertices from 7 uniformly reduces the eccentricities of the remaining vertices (i.e., vertices
in 7") by one. Therefore, all vertices that had as centers will still remain centers in 7’. From 7’ we
can again remove all pendant vertices and get another tree 7"”. Continue this process, until there is
left either a vertex (which is the center of T') or an edge (whose end vertices are the two centers of
T). Thus the theorem.

- - !
2 I 2

C

] Cenler

W]

R If a tree T has two centers, then the two centers must be adjacent.

Definition 0.7.14 — ROOTED TREE. A tree in which one vertex (called the root) is
distinguished from all the others is called a rooted tree.

Examples:
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Rooted tree with four vertices.

exactly one vertex of degree two and each of the remaining vertices is of degree one or

I Definition 0.7.15 — BINARY TREE. A binary tree is defined as a tree in which there is
three.

Examples:

p) Every binary tree is a rooted tree.

R) A non-pendant vertex in a tree is called an internal vertex.

p) The number of internal vertices in a binary tree is one less than the number of pendant
vertices.

Let p be the number of pendant vertices in a binary tree 7. Then n — p — 1 is the
number of vertices of degree three.

We know that the sum of the degrees of all vertices in 7 is twice the number of edges
in T'. That is,

p+3n—p—-1)+2=2(n—-1)
—p+3n—-3p—-3+2=2n-2
= 2p=n+1
n+1
T2
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I Corollary 0.7.12 The number of vertices in a binary tree is always odd.

Proof. Let the number of vertices in a binary tree be n.

In a binary tree, there is exactly one vertex of even degree, and the remaining n — 1 vertices are of
odd degrees.

We know that the number of vertices of odd degrees is even, therefore n — 1 is even.

Hence n is odd. |

Definition 0.7.16 — LEVEL OF A VERTEX. In a binary tree a vertex v; is said to be at
level [; if v; is at a distance of /; from the root.

R The root is at level 0.

p) The maximum level (/nax), of any vertex in a binary tree is called the height of the tree.

Examples:

Level 0

Level 4

A 13-vertex, 4-level binary tree.

Lewvel Level
0 0
1
|
¥
3
2
4
3 5

11-vertex binary trees.

Definition 0.7.17 — SPANNING TREE. A tree T is said to be a spanning tree of a
connected graph G if T is a subgraph of G and T contains all vertices of G.
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R) Anedge in a spanning tree T is called a branch of the spanning tree 7.
If an edge of a connected graph G is not a branch of a spanning tree T, then the edge is called
a chord of the spanning tree 7.
Examples:

The edges b1, b, ..., bg are branches of the tree indicated by thick edges.

YA
i.

Theorem 0.7.13 Every connected graph has at least one spanning tree.

=1

U h 5

Graph and three of its spanning trees.

Proof. Let G be a connected graph.

If G has no circuit, then G is a spanning tree.

If G has a circuit, then delete an edge from this circuit, till the graph is connected.

If there are more circuits, repeat the process till an edge from the last circuit is deleted, leaving the
graph connected, circuitless and contains all the vertices of G.

Thus the subgraph obtained is a spanning tree of G.

Hence every connected graph has at least one spanning tree. |



32

Theorem 0.7.14 With respect to any of its spanning trees, a connected graph of 7 vertices and e
edges has n — 1 tree branches and e — n+ 1 chords.

Proof. Let G be a connected graph with n vertices and e edges.

Let T be any spanning tree in G.

Since every spanning tree of G contains all the vertices of G.

.. Total number of vertices in T is n and total number of edges in 7 is n — 1.

Since every edge of a spanning tree 7 is called a branch of 7', therefore G contains n — 1 branches
wrto T.

Since the number of edges in G is e, therefore the number of chords in G w.r.to T is

e—(n—1)=e—n+1

Definition 0.7.18 — RANK AND NULLITY OF A GRAPH. If a graph G has n vertices,
e edges and k components, then

Rankis r=n—kand Nullityis gt =e—n-+k

R ) Rank of G is the number of branches in any spanning tree of G.
Nullity of G is the number of chords in G.
Rank+Nullity= number of edges in G.

p) If Gisaconnected graph, then rank = n — 1 and nullity=e¢ —n+ 1.

Definition 0.7.19 — FUNDAMENTAL CIRCUIT. Consider a spanning tree 7 in a con-
nected graph G. Adding any one chord to T will create exactly one circuit. Such a circuit,
formed by adding a chord to a spanning tree, is called a fundamental circuit.

Examples:

G

Graph Spanning tree EGDBCFE - Fundamental circuit
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/]
7N

Tree

Fundamental circuit






Definition 0.7.20 — CUT-SET. In a connected graph G, a cut-set is a set of edges whose
removal from graph G leaves G disconnected, provided removal of no proper subset of
these edges disconnects G.

Example:
1
k

oy Y Ly

[

a Uﬁ h

¢

Ly iy o U

Removal of a cut-set {a,c,d, f} from a graph cuts it into two.
In figure, the cut-sets are: {a,c,d, f},{a,b,g},{a,b,e,f},{d,h, f},{k}.

p) Rank of G is the number of branches in any spanning tree of G.
Nullity of G is the number of chords in G.
Rank-+Nullity= number of edges in G.
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p) Every edge of a tree is a cut-set because removal of any edge from a tree cuts the tree into
two parts.

Theorem 0.7.15 Every cut-set in a connected graph G must contain at least one branch of every
spanning tree of G.

Proof. Let G be a connected graph and S be a cut-set of G.
If possible, suppose T is spannig tree of G which has no edge included in the cut-set S. Therefore
T is completely contained in G — S. As T is a spanning tree and spans through all the vertices of G,
the subgraph G — S remains connected.
But, that is not possible as removal of a cut-set must leave the graph disconnected.
Therefore, our assumption is wrong. Hence, every cut-set in a connected graph G must contain at
least one branch of every spanning tree.

|

Theorem 0.7.16 In a connected graph G, any minimal set of edges containing at least one
branch of every spanning tree of G is a cut-set.

Proof. Let G be a connected graph and Q be a minimal set of edges containing at least one branch
of every spanning tree of G.

Now, G — Q is a subgraph of G from which at least one branch of every spanning tree is missing.
As G — Q cannot contain any spanning tree of G completely, it must be disconnected. Since, Q is a
minimal set of edges with this property, any edge e returned from G to G — Q will create at least
one spanning tree. Therefore, G — QO + e will be a connected graph.

Thus, Q is a minimal set of edges whose removal from G disconnects G.

Hence, Q is a cut-set of G. |

Theorem 0.7.17 Every circuit has an even number of edges in common with any cut-set.

Proof. Consider a cut-set S in graph G. Let the removal of S partition the vertices of G into two
(mutually exclusive or disjoint) subsets V| and V,. Consider a circuit I" in G. If all the vertices in I"
are entirely within vertex set V| (or V»), the number of edges common to § and I" is zero; that is,
N(SNT) =0, an even number; where N(SNT) is the number of edges in subgraph SN7.

A
e \
- ~
y 5 \
/!

/ \ B :
! \ \
If | ——
i | |
\ /.f e —

A I

N\ /’ ‘—+——;
\\\I/l /// |
> |

Circuit I" shown in heavy lines and is traversed along the direction of the arrows.
Circuit and a cut-set in G.

On the other hand, if some vertices in I" are in V| and some in V,, we traverse back and forth
between the sets V| and V, as we traverse the circuit. Because of the closed nature of a circuit, the
number of edges we traverse between V| and V, must be even. And since very edge in S has one
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end in V| and the other in V5, and no other edge in G has this property (of separating sets V| and
V»), the number of edges common to S and I is even. [ |

Definition 0.7.21 — FUNDAMENTAL CUT-SET. Consider a spanning tree 7' of a con-
nected graph G. Take any branch b in 7. Since b is a cut-set in 7', {b} partitions all
vertices of T into two disjoint sets—one at each end of b. Consider the same partition
of vertices in G, and the cut set S in G that corresponds to this partition. Cutset S will
contain only one branch b of T, and the rest (if any) of the edges in S are chords with
respect to 7. Such a cut-set § containing exactly one branch of a tree T is called a
fundamental cut-set with respect to 7'.

Example:

Fundamental cut-sets of a graph.

Theorem 0.7.18 The ring sum of any two cut-sets in a graph is either a third cut-set or an edge-
disjoint union of cut-sets.

Theorem 0.7.19 With respect to a given spanning tree 7', a chord ¢; that determines a funda-
mental circuit I" occurs in every fundamental cut-set associated with the branches in I" and in no
other.

Proof. Let I be the fundamental circuit of a connected graph G w.r.to a chord ¢; of a spanning tree
T. Let I consist of k branches by, b, b3, ..., by in addition to the chord c;.

that is, I' = {¢;,b1,b2,b3,...,b;} is a fundamental circuit with respect to T. Every branch of any
spanning tree has a fundamental cut-set associated with it.

Let Sy be the fundamental cut-set associated with by consisting of g chords in addition to the branch
by; thatis, Sy = {bi,c1,¢2,¢3,...,¢4} is a fundamental cut-set w.r.to 7.

We know that "Every circuit has an even number of edges in common with any cut-set", there must
be an even number of edges common to I" and S;. Edge b, is in both I" and S; and there is only one
other edge in I' (which is ¢;) that can possibly also be in S;. Therefore, we must have two edges
b1 and ¢; common to S; and I'. Thus the chord ¢; is one of the chords Exactly the same argument
holds for fundamental cut-sets associated with by, b3, ..., by . Therefore, the chord ¢; is contained in
every fundamental cut-set associated with branches in I".
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Theorem 0.7.20 With respect to a given spanning tree 7, a branch b; that determines a funda-
mental cut-set S is contained in every fundamental circuit associated with the chords in S, and in
no others.

Proof. Let the fundamental cut-set determined by a branch b; of spanning tree 7" be

S ={bi,c1,c2,¢3,...,cp}, where ci,¢2,c¢3,...,cp, are chords of T.

LetI'y = {ci,b1,b2,b3,...,b,}, where by, by, b3, ..., b, are branches of T'.

We know that "Every circuit has an even number of edges in common with any cut-set", the number
of edges common to § and I'; must be even. Therefore, b; must be in I';. Exactly the same argument
holds for the fundamental circuits associated with chords ¢;,c3,...,c).

Now, we show that no other fundamental circuit of T contains b; (besides those associated with
€1,€2,C3,...,Cp). Suppose that b; occurs in a fundamental circuit I',; | made by a chord other than
€1,€2,C3, ..., Cp.

Then b; is the only edge common to I',;1 and S, which is not possible. Hence the theorem. |

Definition 0.7.22 — VERTEX CONNECTIVITY. The vertex connectivity of a connected
graph G is defined as the minimum number of vertices whose removal from graph G
leaves the remaining graph disconnected.

p) The vertex connectivity of a tree is 1.

Examples:

Vertex Connectivity is 1

vy d Uy

YU ¢ Ys

vy ! Us

Vertex Connectivity is 2
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Vertex Connectivity is 1

Definition 0.7.23 — EDGE CONNECTIVITY. The edge connectivity of a connected graph
G is defined as the minimum number of edges whose removal reduces the rank of the
graph by one.

p) The edge connectivity of a tree is 1.

Examples:

Edge Connectivity is 1

] d Uy

vy f Us

Edge Connectivity is 2
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Edge Connectivity is 3

Definition 0.7.24 — COMPLEMENT. Complement of a simple graph G is a simple graph
G having the same vertices of G and the vertices which are adjacent in G are not adjacent
in G.

Examples:

R Number of vertices in G = Number of vertices in G.

n(n—l)'

p) No. of edges in G+ No. of edges in G = No. of edges in a complete graph = 5

p) Complement of a complete graph is always a null graph.
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~

Definition 0.7.25 — SEPARABLE GRAPH. A connected graph is said to be separable if
its vertex connectivity is one. All other connected graphs are called non-separable.

OR

A connected graph G is said to be separable if there exists a subgraph g in G such that g
(the complement of g in G) and g have only one vertex in common.

Example:

p) Inaseparable graph a vertex whose removal disconnects the graph is called a cut-vertex or a
cut-node or an articulation point.

Theorem 0.7.21 A vertex v in a connected graph G is a cut-vertex if and only if there exist two
vertices x and y in G such that every path between x and y passes through v.

Theorem 0.7.22 The edge connectivity of a graph G cannot exceed the degree of the vertex
with the smallest degree in G.

Proof. Let vertex v; be the vertex with the smallest degree in G. Let d(v;) be the degree of v;.
Vertex v; can be separated from G by removing the d(v;) edges incident on vertex v;. Hence the
theorem. |

Theorem 0.7.23 The vertex connectivity of any graph G can never exceed the edge connectivity
of G.

Proof. Let a denote the edge connectivity of G. Therefore, there exists a cutset S in G with o
edges. Let S partition the vertices of G into subsets V| and V,. By removing at most o vertices
from V; (or V,) on which the edges in S are incident, we can effect the removal of S (together with
all other edges incident on these vertices) from G. Hence the theorem. |

p) Every cut-set in a non-separable graph with more than two vertices contains at least two
edges.

Theorem 0.7.24 The maximum vertex connectivity one can achieve with a graph G of n vertices

2 2
and e edges (e > n— 1) is the integral part of the number —e; that is, [—e} .
n n
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Definition 0.7.26 — PLANAR AND NON-PLANAR GRAPHS. A graph G is said to be
planar if there exists some geometric representation of G which can be drawn on a plane
such that no two of its edges intersect.

A graph that cannot be drawn on a plane without a crossover between its edges is called
non-planar.

R) A drawing of a geometric representation of a graph on any surface such that no edges intersect
is called embedding.

Examples:

Planar Non-Planar

Planar graphs (Same graph can be drawn in different ways).

Two non-planar graphs.

Definition 0.7.27 — BIPARTITE GRAPH. A graph G is called bipartite if its vertex set V
can be decomposed into two disjoint subsets V| and V, such that every edge in G joins a
vertex in V| with a vertex in V5.

p) Every tree is a bipartite graph.

p ) Bipartite graph is denoted by K, »,, where m and n are the numbers of vertices in V; and V,
respectively.
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Examples:

Biparntite Graph non-Bipartite Graph
v V[ V2
V6 y 2 Vi V2

Vs

vj‘%
Vj
Vs Ve

Bipartite graph.

Definition 0.7.28 — COMPLETE BIPARTITE GRAPH. A bipartite graph is said to be a

complete bipartite graph if there is one edge between every vertex of set V| to every
vertex of set V.

Examples:

N4

Complete bipartite graph — K 3.

Complete bipartite graph — K3 3.

[ ]
KI,&I‘

Complete bipartite graph Kj g.
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0.8 KURATOWSKI'S TWO GRAPHS

Theorem 0.8.1 The complete graph of five vertices (Ks) is non-planar.

OR
Kuratowski’s first graph is non-planar.

Proof. Let the five vertices in the complete graph (Ks) be named vy, v,,v3,v4 and vs. A complete
graph is a simple graph in which every vertex is joined to every other vertex by means of an edge.
So, we must have a circuit going from v; to v, to v3 to v4 to vs to vy - that is, a pentagon. This
pentagon divides the plane into two regions, one inside and the other outside.

%
, m .
Ug Uy

Since vertex vy is to be connected to v3 by means of an edge, this edge may be drawn inside or
outside the pentagon (without intersecting the five edges drawn previously). Suppose that we
choose to draw a line from v; to v3 inside the pentagon.

Uy
, /\ .,
Ug Uy

Now we have to draw an edge from v, to v4 and another one from v, to vs. Since neither of these
edges can be drawn inside the pentagon without crossing over the edge already drawn, we draw
both these edges outside the pentagon.

N
@ Us
Ug Uy

The edge connecting v3 and vs cannot be drawn outside the pentagon without crossing the edge
between v, and v4. Therefore, v3 and vs have to be connected with an edge inside the pentagon.




0.8 KURATOWSKI'S TWO GRAPHS 45

%
@ U3
Ug Uy

Now we have yet to draw an edge between v; and v4. This edge cannot be placed inside or
outside the pentagon without a crossover. Thus the graph cannot be embedded in a plane. Hence

the graph Ks is non-planar.
Uy
| @ |
Ug Uy

Theorem 0.8.2 The complete bipartite graph (K3 3) is nonplanar.

OR
Kuratowski’s second graph is non-planar.

Proof. The complete bipartite graph has six vertices and nine edges. Let the vertices be u,un,u3, vy, v, v3.
We have edges from every u; to each v;, where 1 < i < 3. First we take the edges from u; to each

Vi, V2 and V3.
H| 11'2 HS
N
» ] b
l'] 1-2 1__‘.

Then we take the edges between u, to each vy, v, and v3. Thus we get three regions namely I, 11
and III.
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Finally we have to draw the edges between u3 to each vy, v, and v3. We can draw the edges between
u3 and vs3 inside the region II without any crossover. We can also draw the edges between u3 and
v inside the region II without any crossover. But the edge from u3 to v can not be drawn in any
region without having a crossover with the previous edges. Thus the graph cannot be embedded in

a plane. Hence K3 3 is nonplanar. |
R
1. Both K5 and K33 are regular graphs.
2. Both K5 and K3 3 are non-planar graphs.
3. In K5 and K3 3, Removal of one edge or a vertex makes each a planar graph.
4. Kuratowski’s first graph is the non-planar graph with the smallest number of vertices

and Kuratowski’s second graph is the non-planar graph with the smallest number of
edges.
5. Both K5 and K3 3 are the simplest non-planar graphs.

Theorem 0.8.3 Any simple planar graph can be embedded in a plane such that every edge is
drawn as a straight line segment.

Definition 0.8.1 — REGION. A plane representation of a graph divides the plane into
regions (or faces).

Example:

Y i Ll Ll Ll L,

Plane representation with six regions.

Definition 0.8.2 — INFINITE REGION. The portion of the plane lying outside a graph
embedded in a plane is called the infinite (or unbounded or outer or exterior) region.
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Example:

Region 4 is an infinite region.

R) Any simple planar graph can be drawn without crossings so that its edges are straight line
segments.

Example:

US Uy
Straight-line representation of the graph G
Graph G

Theorem 0.8.4 A connected planar graph with n vertices and e edges has e —n + 2 regions.

Proof. 1t is sufficient to prove for a simple graph, because adding a self-loop or a parallel edge
just adds one region to the graph and simultaneously increases the value of e by one. We can also
remove all edges that do not form boundaries of any region. Three such edges are shown in the
following figure:




48

Adding (or removing) of any such edge increases (or decreases) e by one and increases (or decreases)
n by one, keeping the value e — n unchanged.

Since any simple planar graph can have a plane representation such that each edge is a straight line,
any planar graph can be drawn such that each region is a polygon. Let the polygon representing the
given graph consist of f regions and let k), be the number of p-sided regions. Since each edge is on
the boundary of exactly two regions,

3ek3+4-kg+5Ks+ oo, 47k, =2e o))

where k, is the number of polygons with maximum edges.
Also,

ks+ky+ks4 o +k.=f 2)

The sum of all angles subtended at each vertex in the polygon = 27n 3)

We know that the sum of all interior angles of a p-sided polygon is w(p —2) and the sum of the
exterior angles is 7(p +2), now finding the expression in (3) as

the grand total of all interior angles of f — 1 finite regions + the sum of the exterior angles of the
polygon = the infinite region. i.e.,

vox voox voox v X

T(3—=2) ks+mw(4—2) ka+7m(5-2) ks+ .coeeevernn. +7r(r—2)-k,+4m=2nn
T{3-k3+4-ka+5ks+.cooiennn.. +rok} —2m{ks+ka+ks+ oo +k}+4n =2mn
n-2e—2n-f+4n =2nn -~ from (1) and (2)

Dividing throughout by 27, we get
e—f+2=n

Hence, the number of regions is given by

=1

(Euler’s formula) |

Corollary 0.8.5 In any simple connected planar graph with f regions, n vertices and e edges
(e > 2), the following inequalities must hold:

a
Vv
[\S ROV

f

Q
IA
w
3
|
o
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Proof. Since each region is bounded by at least three edges and each edge belongs to exactly two
regions,

3
2623f:>e2§f 4)
Substituting for f from Euler’s formula in inequality (4), we get

3
e>=(e—n+2) = 2¢>3e—3n+6 — 3n—6>¢ = ¢<3n—6

-2
|
p) Theinequality e < 3n — 6 is useful in finding out if a graph is non-planar.
m Example 0.2 Prove that a complete graph with 5 vertices Ks is non-planar.
Solution: n =5,¢ =10
Consider,3n—6=3-5—6=9<ebute <3n-—06.
= The graph K is non-planar. "

» Example 0.3 Prove that K3 3 is non-planar.
Solution: In K3 3, n==6,e=9.

Suppose K3 3 is planar. Then in this planar representation of graph, there is no region less than 4
edges and so

2e >4f
2¢ >4(e—n+2) (by Euler’s formula f = e —n+2)
2%9>4(9 - 6+2)

18 >20, is a contradiction

Hence, a graph K3 3 is non-planar. "

Geometric Dual:

Consider the plane representation of a graph in figure, with six regions or faces Fi, F», F3, Fy, F5 and
Fs.

fy

a'c
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Now place six points p1, p2, p3, pa, ps and pg, one in each of the regions, as shown in figure:

P, ©

Next join these six points according to the following procedure:

If two regions F; and F; are adjacent (i.e., having a common edge), draw a line joining points p;
and p; that intersects the common edge between F; and F; exactly once. If there is more than one
edge common between F; and F};, draw one line between points p; and p; for each of the common
edges. For an edge e lying entirely in one region, say Fy, draw a self-loop at point py intersecting e
exactly once.

By this procedure we get a new graph G* [in dotted lines] consisting of six vertices p1, p2, P3, P4, Ps
and pg and of edges joining these vertices. Such a graph G* is called a dual of G.

- —_——

p ) Relationship between a planar graph G and its dual G* are:

An edge forming a self-loop in G yields a pendant edge in G*.

A pendant edge in G yields a self-loop in G*.

Edges that are in series in G produce parallel edges in G*.

Parallel edges in G produce edges in series in G*.

Graph G* is also embedded in the plane and is therefore planar.

Considering the process of drawing a dual G* from G, it is clear that G is a dual of G*.
Therefore, G and G* are dual graphs.

7. If n,e, f,r and u denote the numbers of vertices, edges, regions, rank, and nullity of a
connected planar graph G, and if n*, e, f*,r* and u* are the corresponding numbers in
dual graph G*, then

Uk W=

n=f
f=e) = r'=u pu=r

f=n
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Examples:

S

N - ————

- - -

The red graph is the dual graph of the blue graph and vice versa.

Theorem 0.9.1 A graph has a dual if and only if it is planar.

embedded in a plane.

Theorem 0.9.2 A graph can be embedded in the surface of a sphere if and only if it can be

Proof. To eliminate the distinction between finite and infinite regions, a planar graph is often
embedded in the surface of a sphere. It is accomplished by stereographic projection of a sphere on
a plane. Put the sphere on the plane and call the point of contact SP (south pole). At point SP, draw
a straight line perpendicular to the plane, and let the point where this line intersects the surface of

the sphere be called NP (north pole).
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Stereographic projection.

Now, corresponding to any point p on the plane, there exists a unique point p’ on the sphere and
vice versa, where p’ is the point at which the straight line from point p to point NP intersects the
surface of the sphere. Thus there is a one-to-one correspondence between the points of the sphere
and the finite points on the plane, and points at infinity in the plane correspond to the point NP on
the sphere. From this construction, it is clear that any graph that can be embedded in a plane (i.e.,
drawn on a plane such that its edges do not intersect) can also be embedded in the surface of the
sphere, and vice versa.

Hence, a graph can be embedded in the surface of a sphere if and only if it can be embedded in a
plane. |



Theorem 0.9.3 The ring sum of two circuits in a graph G is either a circuit or an edge-disjoint
union of circuits.

Proof. Let I'1 and I'; be any two circuits in a graph G. If the two circuits have no edges or
vertices in common, their ring sum I'; @I is a disconnected subgraph of G, and is obviously an
edge-disjoint union of circuits. If I'; and I'; do have edges and/or vertices in common, we have the
following possible situations:

Since the degree of every vertex in a graph that is a circuit is two, every vertex v in subgraph
I'y T, has degree d(v), where

d(v) =2,if visinI'j or I'; only; or if one of the edges formerly incident on v was in both I'} &I™,
d(v) =4,if I'; and I'; just intersect at v (without a common edge).

There is no other type of vertex in I'y @1%. Thus I'; @17 is an Euler graph, and therefore consists
of either a circuit or an edge-disjoint union of circuits. |

0.10 VECTOR SPACE ASSOCIATED WITH A GRAPH

)
e

G

Consider the graph G with four vertices and five edges e, e;,e3,e4,e5. Any subset of these five
edges (i.e., any subgraph g) of G can be represented by a 5-tuple:

X = (x1,%2,X3,X4,X5)
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such that

1 ife;isingand
Xi =
0 ife;isnoting

For example, the subgraph g; of G can be represented by (1,0, 1,0, 1) and the subgraph g, of
G can be represented by (0,1,1,1,0).

Altogether there are 2° = 32 such 5-tuples possible, including the zero vector 0 = (0,0,0,0,0),
which represents a null graph and (1,1,1,1,1), which is G itself.
It is easy to check the ring-sum operation between two subgraphs corresponds to the modulo 2
addition between the two 5-tuples representing the two subgraphs. For example, consider two
subgraphs g; and g, of G. The ring sum I'y @I, = {e},e2,e4,e5} represented by (1,1,0,1,1),
which is clearly modulo 2 addition of the 5-tuples for g; and g.

0.117 MATRIX REPRESENTATION OF GRAPHS

Definition 0.11.1 — INCIDENCE MATRIX. Let G be a graph with n vertices, e edges,

and no self-loops. Define an n by e matrix A = [a;;], whose n rows correspond to the n
vertices and the e columns correspond to the e edges, as follows:
The matrix element

{1, if j* edge e is incident on /" vertex v; and
a; =

0, otherwise

p) Incidence matrix is also called as the vertex-edge incidence matrix and is denoted by A(G).

p) The incidence matrix contains only two elements 0 and 1. Such a matrix is called a binary
matrix or a (0, 1)-matrix.

m Example 0.4 Write the incidence matrix of the following graph:
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Solution:
Incidence matrix:

a b C d ¢
o
Uy 0 0 0 1 0
) 0 0 0 0 1
U3 0 0 0 0 0
A(G) =
Uy 1 1 | 0 1
Us 0 0 1 1 0
Vg 1 1 0 0 0
U1

v

G e €2 Vo

€3 s A = V3

V2 €4 V4

V4

_o O O =
S = O = O

OO B
oOrRrOrR S
— O ORK &
= OO (S

- o O© = O
-_o = O O
o S = e
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Vi 3

V2 €q Vv
€3 vi | 1 L 0 0 0 0
va | O 0 1 1 0 1
e £s wl® 8 8 © 1 1
€ w1 B 1 B O O
Vs

0 0 )
Va vs | C l b1 l (

1. Every edge is incident on exactly two vertices, each column of incident matrix has
exactly two 1’s.

The number of 1’s in each row = the degree of the corresponding vertex.

A row with all O’s, therefore, represents an isolated vertex.

Parallel edges in a graph produce identical columns in its incidence matrix.

If a graph G is disconnected and consists of two components g; and g», the incidence
matrix A(G) of graph G can be written in a block- diagonal form as

A(G) = [ﬁ(&?-_g_-“‘?_}

where A(g;) and A(g») are the incidence matrices of components g; and g;.

nhkw

Theorem 0.11.1 Two graphs G| and G, are isomorphic if and only if their incidence matrices
A(G)) and A(G) differ only by permutations of rows and columns.

Theorem 0.11.2 If A(G) is an incidence matrix of a connected graph G with n vertices, the rank
of A(G)isn—1.

Proof. Let A(G) be an incidence matrix of a connected graph G with n vertices and m edges. Then

[ay1 ap aiz - an
ar axp ax - Qg
azy azxp asx -+ a
A(G) = 31 a3 3 3m
Ldnl ap2 ap3 - Apm|
Let the vectors in each row be respectively Aj,A>,As,.....,A,. Then
AT
A
A
A@G) ="
_A”l_

Since there are exactly two 1’s in every column of A, the sum (mod 2) of all these vectors are zero.
Thus vectors Aj,A»,As,.....,A, are not linearly independent. Therefore, the rank of A is less than n,
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ie., rank of A(G) <n—1.

Now, consider the sum of any k rows of these n vectors. (k < n— 1). If the graph is connected, A(G)
cannot be partitioned i.e., no k X k submatrix of A can be found for kK < n— 1. Hence, the addition
of all vectors taken k at a time exhaust all possible linear combinations of n — 1 row vectors, i.e.,
there is no linear combination of k row vectors of A(G) equal to zero. So, the rank of A(G) must be
at leastn — 1. |

vertices and e edges. If we delete any one row from A(G), then the remaining (n— 1) by

Definition 0.11.2 Let A(G) be an incidence matrix of a connected graph G with n
e submatrix A of A is called a reduced incidence matrix.

p) The vertex corresponding to the deleted row is called the reference vertex.

p) A treeis a connected graph with n vertices and (n — 1) edges, then its reduced incidence
matrix is a square matrix of order (n— 1) by (n—1).

m Example 0.5 Write the incidence matrix and reduced incidence matrix of the following graph:

I 3 5

Solution: "
b e f gdac h k b e f g d a c h k
1 1.0 0 01 000 1 1 0 001 0 0 0
1 01 1 001 00 1 01 1 001 00
A=[0 11000010 A=l I 16666 i 6
O 0 01 1 0 011
00001 1 10 I A EREEARE

. ) Reduced incidence matrix.
Incidence matrix.

I Corollary 0.11.3 The reduced incidence matrix of a tree is non-singular.

Proof. A graph with n vertices and n — 1 edges that is not a tree is disconnected. The rank of the
incidence matrix of such a graph will be less than n — 1. Therefore, the n — 1 by n — 1 reduced
incidence matrix of such a graph will not be nonsingular. In other words, the reduced incidence
matrix of a graph is non-singular if and only if the graph is a tree. |
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A matrix obtained by deleting (neglecting) some rows or columns of a matrix is said to be a
submatrix of the given matrix.

Example:
1 4 5 ) 1 1 5
IfA= {0 | 2] , then a few submatrices of A are [1] s [2], [O} , {0 2] ,A.

1 4 1 4 )
But [1 0] and [0 2} are not submatrices of A.

Theorem 0.11.4 Let A(G) be an incidence matrix of a connected graph G with n vertices. An
n— 1 by n— 1 submatrix of A(G) is nonsingular if and only if the n — 1 edges corresponding to
the n — 1 columns of this matrix constitute a spanning tree in G.

Definition 0.11.3 — CIRCUIT MATRIX. Let the number of different circuits in a graph
G be g and the number of edges in G be e. Then a circuit matrix B = [b;;] of G is a ¢ by
e, (0,1)-matrix defined as follows:

The matrix element

be 1, if i"" circuit includes j edge and
Y 0, otherwise

p) Circuit matrix is denoted by B(G).

m Example 0.6 Write the circuit matrix of the following graph:

Uy

Solution:

Circuit matrix: The graph G has four different circuits, {a,b},{c,e,g},{d, f,g} and {c,d, f,e}.
Therefore, its circuit matrix is a 4 by 8 matrix:

B(G) =

2 W -

o o o —= 0
o0 O - o
- o — O N
—_ - 0 O 8
e e = L)
—_ — O O Y
o - — O M
o o o o =
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1. A column of all zeros corresponds to a noncircuit edge (i.e., an edge that does not
belong to any circuit).
Each row of B(G) is a circuit vector.
. The number of 1’s in a row is equal to the number of edges in the corresponding
circuit.
4. If graph G is separable (or disconnected) and consists of two blocks (or components)
g1 and g, the circuit matrix B(G) can be written in a block-diagonal form as

W

where B(g;) and B(g») are the circuit matrices of components g; and g».

Theorem 0.11.5 Let B and A be respectively the circuit matrix and the incidence matrix (of a
self-loop-free graph) whose columns are arranged using the same order of edges. Then every
row of B is orthogonal to every row A;

i.e., ABT = BAT =0 (mod 2)

where superscript T denotes the transposed matrix.

Proof. Consider a vertex v and a circuit I' in the graph G. Either v is in I" or it is not. If v is not in
I, there is no edge in the circuit I" that is incident on v. On the other hand, if v is in I', the number
of those edges in the circuit I" that are incident on v is exactly two.

Now, consider the i row in A and the j* row in B. Since the edges are arranged in the same order,
the non-zero entries in the corresponding positions occur only if the particular edge is incident on
the " vertex and is also in the j** circuit.

If the i vertex is not in the j™” circuit, there is no such non-zero entry, and the dot product of
the two rows is zero. If the i/ vertex is in the j*” circuit, there will be exactly two 1’s in the sum
of the products of individual entries. Since 1+ 1 = 0(mod2), the dot product of the two arbitrary

rows-one from A and the other from B-is zero. Hence the theorem. [ |

Example: For the following graph:

Uy
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1 0 0 0]
0 0 01 01 0 0] |1 0 0O
0O 0 00 1 I 11 01 0 1
A.BT=0000000] 00 1 1
1 1101 000 01 0 1
001 1 0010 0 0 1 1
|1 1 00 00 OO |O 110
L0 0 0 0
0 0 0 O
0O 0 0 0
:0000 (mod 2).
0O 0 0O
0O 0 0O
0 0 0 0]

Definition 0.11.4 — FUNDAMENTAL CIRCUIT MATRIX. A submatrix B¢(G) of a circuit
matrix B(G) in which all rows correspond to a set of fundamental circuits w.r.to spanning
tree in G is called a fundamental circuit matrix.

p) Fundamental circuit matrix is denoted by By.

m Example 0.7 Write the fundamental circuit matrix with respect to the spanning tree (shown in
heavy lines) of the following graph:

€4

95 ET

L3 €}

Solution:

Branches = {e},e4,e5,€7}.

Chords = {e,e3,e¢}. (There are 3 chords, therefore there must be 3 fundamental circuits).
Fundamental Circuits are:

D ={ez,e1,e7,e4}

@ = {63764767}
Q) = {es,e5,e7}
Fundamental circuit matrix:
E’Q (’3 96 €] €4 €5 €7
I
@M ¥ Bl1I T ® i
|
@ |o 1 gy ¢ B : 0 |
|
|
[
|



0.11 MATRIX REPRESENTATION OF GRAPHS 61

Theorem 0.11.6 (Sylvester’s theorem) If Q is k by n matrix and R is an n by p matrix, then
rank of Q +rank of R < n.

Theorem 0.11.7 If B is a circuit matrix of a connected graph G with e edges and n vertices, then
rank of B=e—n+1.

Proof. If A is an incidence matrix of G, then we have A - BT = O (mod?2).
Therefore, according to Sylvester’s theorem, rank of A + rank of B < e.

— rank of B < ¢ —rank of A 5

Since rank of A = n — 1, equation (5) becomes,

rankof B<e—(n—1) = rankof B<e—n+1 (6)
But

rankof B>e—n+1 (7
From equations (2) and (3), we getrank of B=e¢—n—+ 1. [

Definition 0.11.5 — CUTSET MATRIX. Let the number of rows represent the cutsets and
the number of columns represent the edges of a graph G. Then the cutset matrix C = [c;;]
of G is defined as follows:

The matrix element

1, if i"" cutset contains j"* edge and
Ci; =
Y 0, otherwise

p) Cutset matrix is denoted by C(G).

m Example 0.8 Write the cutset matrix of the following graph:

Solution:
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The graph G has 8 different cutsets, {h},{a,b},{e,c},{f,g.e},{f,g c},{d,f},{c, g d}, and
{e,g,d}. Therefore, its cutset matrix is a 8 by 8 matrix:

a b c d e f g h
1 [o o 0 0 0 0 0 1]
2 | | 0 0 o 0 0 0
3 o o | 0 1 0o 0 0
4 o o o0 0 1 1 I 0

C-=

s o o ! 0o 0 | | 0
6 o o o0 ! 0 1 0 0
7 o o I | 0 0 | 0
s o 0o o ! | 0 | 0|

Each row in C(G) is a cut-set vector.

A column with all 0’s corresponds to an edge forming a self-loop.

Parallel edges produce identical columns in the cut-set matrix.

The rank of cut-set matrix C(G) = the rank of the incidence matrix A(G) = the rank
of graph G.

5. Since the number of edges common to a cut-set and a circuit is always even, every row
in C is orthogonal to every row in B, provided the edges in both B and C are arranged
in the same order. i.e.,

b

B-CT =C-BT =0(mod 2)
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Theorem 0.11.8 The rank of cut-set matrix C(G) is equal to the rank of the incidence matrix

A(G), which equals the rank of graph G.

Proof. Since the matrix A(G) is a submatrix of cut-set matrix C(G), therefore

rank of C(G) > rank of A(G) =n—1.

We know that B(G) C(G)" = 0.
Since G is a connected graph, by Sylvestor’s theorem,

rank of B(G) +rank of C(G) < e.

Also,
rank of B(G) =e—n+1

rank of C(G) < e —rank of B(G)
<e—(e—n+1)

rank of C(G) <n—1.

Combining (1) and (2), we get

rank of C(G) =n— 1 =rank of G.

)

2

the path matrix for (x,y) vertices is P(x,y) = [p;;|, where

1, if j' edge lies in i path and
pij = .
0, otherwise

Definition 0.11.6 — PATH MATRIX. A path matrix is defined for a specific pair of vertices
in a graph, say (x,y), and is written as P(x,y). The rows in P(x,y) correspond to different
paths between vertices x and y, and the columns correspond to the edges in G. That is,

m Example 0.9 Write the path matrix between vertices v3 and v4 of the following graph:

Uy




o%!

Solution: There are three different paths:
1. {h,e}

2. {h,g,c}
3. {hn.f.d,c}
Therefore, its path matrix is a 3 by 8 matrix:
a b ¢ d e f g h
10 O 0O 1 0 0 1
P(v,,2) =210 0 1 0 0 0 I 1
3(0 01 1 01 01

1. A column of all 0’s corresponds to an edge that does not lie in any path between x and
y.

2. A column of all 1’s corresponds to an edge that lies in every path between x and y.

3. There is no row with all 0’s.

4. The ring sum of any two rows in P(x,y) corresponds to a circuit or an edge-disjoint
union of circuits.

Definition 0.11.7 — ADJACENCY MATRIX. The adjacency (connection) matrix of a
graph G with n vertices and no parallel edges is an n by n symmetric binary matrix
X = [x;j] defined over the ring of integers such that

{ 1, if there is an edge between i*and j""vertices,and
x,-.,- =

0, if there is no edge between them.

m Example 0.10 Write the adjacency matrix of the following graph:
b3
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Solution:
Adjacency matrix:

i Us Uy Uy Us U,
v [ 0 | 0 0 1 E ]
Uy 1 0 0 1 ] 0

X= v | 0 0 0 1 0 0
u | 0 1 1 0 ! |
v, | 1 | 0 1 0 0
v | 1 0 0 I 0 {]J

1. The entries along the principal diagonal of X are all O’s if and only if the graph has no
self-loops. A self-loop at the i’ vertex corresponds to x;;.

2. If the graph has no self-loops (and no parallel edges), the degree of a vertex equals the
number of I’s in the corresponding row or column of X.

3. If graph G is separable (or disconnected) and consists of two blocks (or components)
g1 and g», the adjacency matrix X (G) can be written in a block-diagonal form as

X

—

&
Il

where X (g;) and X(g,) are the adjacency matrices of components g; and g5.






Definition 0.11.8 — PROPER COLOURING. Painting all the vertices of a graph with
colours in such a way that no two adjacent vertices have the same colour is called the
proper colouring of a graph.

Examples:

A proper vertex colouring of the A proper vertex colouring of the i i A A

Petersen graph with 3 colours. graph with 3 colours. This graph can be 3-coloured in
12 different ways.
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Red Red v, ? Red
U Blue
U3 Us vy Us % Ys
Green Yellow Green Yellow Yellow Yellow
Uy ® Pink Uy ® Red Uy ® Red

Proper colourings of a graph in 3 different ways.

R) A graph in which every vertex has been assigned a colour according to a proper colouring is
called a properly coloured graph.

R) A given graph can be properly coloured in many different ways.

p) For colouring problems we have to consider only simple, connected graphs.

for its proper colouring, and no less, is called a k-chromatic graph, and the number K is

I Definition 0.11.9 — CHROMATIC NUMBER. A graph G that requires x different colours
called the chromatic number of G.

Examples:
o
®
o ®
1-chromatic graph 2-chromatic graph 3-chromatic graph

p) All parallel edges between two vertices can be replaced by a single edge without affecting
adjacency of vertices.
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p) Self-loops must be ignored.

R) A graph consisting of only isolated vertices is 1-chromatic.

R) A graph with one or more edges is at least 2-chromatic (or bi-chromatic).

R) A complete graph with n vertices is n-chromatic. Hence a graph containing a complete graph
of r vertices is at least r-chromatic.

R) A graph consisting of simply one circuit with n > 3 vertices is 2-chromatic if n is even and
3-chromatic if » is odd.

Theorem 0.11.9 Every tree with two or more vertices is 2-chromatic.

Proof. Select any vertex v in the given tree 7. Consider T as a rooted tree at vertex v. Paint v with
colour 1. Paint all vertices adjacent to v with colour 2. Next, paint the vertices adjacent to these
using colour 1. Continue this process till every vertex in 7 has been painted. Now in 7 we find
that all vertices at odd distances from v have colour 2, while v and vertices at even distances from v
have colour 1.

Proper colouring of a tree.

Now along any path in T the vertices are of alternating colours. Since there is one and only one path
between any two vertices in a tree, no two adjacent vertices have the same colour. Thus T has been
properly coloured with two colours. One colour is not sufficient. Hence, T is 2-chromatic. |

Theorem 0.11.10 A graph with at least one edge is 2-chromatic if and only if it has no circuits
of odd length.




70

Proof. Let G be a connected graph with circuits of only even lengths. Consider a spanning tree
T in G. Using the colouring procedure and we know that "Every tree with two or more vertices
is 2-chromatic", let us properly colour T with two colours. Now add the chords to T one by one.
Since G had no circuits of odd length, the end vertices of every chord being replaced are differently
coloured in 7. Thus G is coloured with two colours, with no adjacent vertices having the same
colour. That is, G is 2-chromatic. Conversely, if G has a circuit of odd length, we would need at
least three colours just for that circuit . Hence the theorem. |

Theorem 0.11.11 If dpax is the maximum degree of the vertices in a graph G, then chromatic
number of G < 1 + dpax.

Definition 0.11.10 — CHROMATIC POLYNOMIAL. A given graph G of n vertices can
be properly coloured in many different ways using a sufficiently large number of colours.
This property of a graph is expressed in a simple manner of a polynomial. This polyno-
mial is called the chromatic polynomial of G and is defined as follows:

The value of the chromatic polynomial P, (1) of a graph with n vertices gives the number
of ways of properly colouring the graph, using A or lesser colours.

Let ¢; be the different ways of properly colouring G using exactly i different colours.
Since i colours can be selected out of A colours in

(2') different ways,
i

A
there are ¢; ( ) different ways of properly colouring G using exactly i colours out of A

i
colours.

Since i can be any positive integer from 1 to n (it is not possible to use more than n
colours upon 7 vertices), the chromatic polynomial is a sum of these terms; i.e.,

< A
Py(A) :Zci <l>

i=1
1.€.,

Ay=a ke AT AAZNGD) AR ont )

Each c; has to be evaluated individually for the given graph.

p) Any graph with even one edge requires at least two colours for proper colouring = ¢; = 0.

R) A graph with n vertices and using n different colours can be properly coloured in n! ways
= ¢, =0.
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Theorem 0.11.12 A graph of n vertices is a complete graph if and only if its chromatic polyno-
mial is

Bu(A) = A(A—1)(A=2)(A—3)-—-(A—n+1)

Proof. With A colors, there are A different ways of colouring any selected vertex of a graph. A
second vertex can be colored properly in exactly A — 1 ways, the third vertex in A — 2 ways, the
fourth vertex in A — 3 ways, . . . , and the n' vertex in A — n+ 1 ways if and only if every vertex is
adjacent to every other. That is, if and only if the graph is complete. |

Theorem 0.11.13 An n-vertex graph is a tree if and only if its chromatic polynomial is

Py(A) = A(A —1)"!

Proof. We can prove this theorem by induction on 7.

When n = 1, there is only one vertex, which can be coloured in A ways.

. P(A) = A(A —1)°, which is true.

Assuming that the result is true for all trees with n < m.

Consider a tree 7" with m vertices.

We know that every tree has at least two pendant vertices.

Remove one pendant vertex from 7 to get a tree T with m — 1 vertices.

Applying induction assumption, 7’ can be coloured with A (A — 1)1,

Now attach the removed pendant vertex to 7”. Since this vertex is adjacent to only one vertex of 7",
it can be coloured with A — 1 ways.

Thus 7T can be coloured with A (A —1)""2(A — 1) = A(A — 1)"~! ways.

Hence for any n, P,(A) =A(A —1)""1, [ |

Theorem 0.11.14 Let a and b be two non-adjacent vertices in a graph G. Let G’ be a graph
obtained by adding an edge between a and b. Let G” be a simple graph obtained from G by
fusing the vertices a and b together and replacing sets of parallel edges with single edge. Then

Pu(A) = P,(A) of G+ Py_1(A) of G

Proof. The number of ways of properly coloring G can be grouped into two cases, one such that
vertices a and b are of the same color and the other such that a and b are of different colors.

Since the number of ways of properly coloring G such that a and b have different colors = number
of ways of properly coloring G’, and number of ways of properly coloring G such that a and b have
the same color = number of ways of properly coloring G”,

Pu(A) = Py(A) of G+ Py_1 (1) of G

p) This theorem is one of the best techniques in evaluating the chromatic polynomial of a given
graph.
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p) To evaluate chromatic polynomial of the given graph G with n vertices:

IfGis then
Complete graph PA)=A2A-1)(A-2)(A-3)---(A—n+1)
Tree P(A)=A(A—1)""1
neither complete graph nor tree Use Theorem 0.11.14

m Example 0.11 Evaluate chromatic polynomial of the following graph:

N

Solution: Since given graph is a complete graph with 2 vertices (K).
.. Its chromatical polynomial is P,(A) = A(A —1).

m Example 0.12 Evaluate chromatic polynomial of the following graph:

/N

Solution: Since given graph is a complete graph with 3 vertices (K3).
.. Its chromatical polynomial is P3(A) = A(A —1)(A —2).

m Example 0.13 Evaluate chromatic polynomial of the following graph:

A

Solution: Since given graph is a complete graph with 4 vertices (Kx).
.. Its chromatical polynomial is Py(A) = A (A —1)(A —2)(A —3).

m Example 0.14 Evaluate chromatic polynomial of the following graph:

Solution: Since given graph is a complete graph with 5 vertices (K5s).
.. Its chromatical polynomial is Ps(A) = A(A —1)(A —2)(A —3)(A —4).
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m Example 0.15 Evaluate chromatic polynomial of the following graph:

Solution: Since given graph is a complete graph with 6 vertices (K).
.. Its chromatical polynomial is Ps(A) = A (A —1)(A —2)(A —3)(A —4)(A —5).

m Example 0.16 Evaluate chromatic polynomial of the following graph:

Solution: Since given graph is a complete graph with 7 vertices (K7).
.. Its chromatical polynomial is P7(A) =A(A —1)(A —2)(A —3)(A —4)(A —5)(A —6).

m Example 0.17 Evaluate chromatic polynomial of the following graph

*—0

Solution: Since given graph is a tree with 2 vertices.
.. Its chromatical polynomial is Py(1) = A(A —1).

m Example 0.18 Evaluate chromatic polynomial of the following graph

Solution: Since given graph is a tree with 3 vertices.
.. Tts chromatical polynomial is P3(1) = A (A — 1)2.

m Example 0.19 Evaluate chromatic polynomial of the following graph:
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Solution: Since given graph is a tree with 4 vertices.
. Its chromatical polynomial is P4(A) = A(A — 1).

m Example 0.20 Evaluate chromatic polynomial of the following graph:

Solution:
Oy
Tree with 3 vertices
Py(A) = A(A - 1)
I YA —2)
PA)=AA—-1)(A=2)(A—=3)+A(A— )(7L—2)+),(7L—1)2
=AA-1D[A-2)(A=3)+(A-2)+ (4 - 1)]
=AA—-1DA* =51 +6+21 -2+ —1]
=A(A—1)(A* =31 +3)

m Example 0.21 Evaluate chromatic polynomial of the following graph:

Y

L

s

Uy
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Solution:

Uy

Us
K3
Uy

Y3

K,

+ Py(A) = Py(A) of Ks+2- Py(A) of Ky + Py(A) of K3

—AA—1DA=2)A=3)A—4) +2A(A — 1)(A —2)(A —3) + A(A — 1)(A —2)
—AA—1D(A—-2)[A—3)(A—4)+2(A—3)+1]
—AA—DA-2)A2—TA+ 12422 —6+1]

—AA—1)(A—-2)(A2 =51 +7)

m Example 0.22 Evaluate chromatic polynomial of the following graph:
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Solution:
Ks
P,(A) =P,
=A(A-1)(A 2)( 3)A—4)+24(A —1)(A=2)(A =3)+ A (A —1)(A —2)
=AA-1)(A-2)[(A-3)(A-4)+2(A -3)+1]
=AA—1)A=2)[A*=TA+124+24 —6+1]
=AA—-1D)A—-2)(A* =51 +7)



Definition 0.11.11 — DIRECTED GRAPH. A directed graph (or a digraph) G consists of
a set of vertices V = {v|,v2,v3,...}, a set of edges E = {e],e2,e3,...} and a mapping y
that maps every edge onto some ordered pair of vertices (v;,v;).

R ) Adigraph is also called as an oriented graph.

p ) Inadigraph, an edge is not only incident into a vertex but is also incident out of a vertex. The
vertex v;, in which an edge ¢y, is incident out of, is called the initial vertex of e;. The vertex
vj, in which an edge ¢y is incident into, is called the terminal vertex of ey.

p ) An edge for which the initial and terminal vertices are same is called a self-loop.

p) The number of edges incident out of a vertex v; is called the out-degree (or out-valence) of
v; and is written d*(v;). The number of edges incident into v; is called the in-degree (or
in-valence) of v; and is written as d~ (v;).

p) Inany digraph G, the sum of all out-degrees is equal to the sum of all in-degrees and each
sum being equal to the number of edges in G; i.e.,
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p) Anisolated vertex is a vertex in which the out-degree and the in-degree are both equal to zero.
ie.,dt(vi)=d (v;) =0.

p) Avertex in a digraph is called pendant if it is of degree one. i.e., d* (v;) +d~ (v;) = 1.

p) Two or more directed edges are said to be parallel if they are mapped onto the same ordered
pair of vertices and must have same sense of direction.

Example:

€10

Uy Us

Directed graph with 5 vertices and 10 edges.

In this graph, vs is the initial vertex and v, is the terminal vertex of the edge ec. An edge es is
the self-loop. Edges eg, eg and e} are parallel but edges e, and e3 are not parallel.

dt(vi)=3; d(v)=1,
d"(vn)=1; d=(v)=2;
dt(v3)=1; d (v3) =4,
d*(vq) = 1; d (va) =3;
d*(vs) =4; d (vs)=0

Definition 0.11.12 — ISOMORPHIC DIGRAPHS. Two digraphs G and G, are said to
be isomorphic if G, can be obtained by relabelling the vertices of G i.e., if there is a
one-one correspondence between the vertices of G; and those of G, such that the edges
joining each pair of vertices in G agree in both number and direction with the edges
joining the corresponding pair of vertices in G,.
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Examples:

Gy
G are G isomorphic digraphs.

Two isomorphic digraphs.

a a

e e c b b
Two non-isomorphic digraphs. Two non-isomorphic digraphs.
1 2 1 2
u v X y
4 3 4 3

Two non-isomorphic digraphs.
Two non-isomorphic digraphs.

0.11.1 Different Types of Digraphs:

Definition 0.11.13 — SIMPLE DIGRAPH. A digraph that has neither self-loop nor parallel
edges is called a simple digraph.

Example:

Definition 0.11.14 — ASYMMETRIC DIGRAPH. Digraphs that have at most one directed
edge between a pair of vertices, but are allowed to have self-loops, are called asymmetric
or antisymmetric.

Examples:



0

(i.e., from vertex a to b) there is also an edge (b,a) (i.e., from vertex b to a) is called a

8
Definition 0.11.15 — SYMMETRIC DIGRAPH. Digraph in which for every edge (a,b)
symmetric digraph.

Example:

Definition 0.11.16 — COMPLETE SYMMETRIC DIGRAPH. A complete symmetric di-
graph is a simple digraph in which there is exactly one edge directed from every vertex
to every other vertex.

p) A complete symmetric digraph of n vertices contains n(n — 1) edges.

Examples:

0 ANy

digraph is an asymmetric digraph in which there is exactly one edge between every pair

I Definition 0.11.17 — COMPLETE ASYMMETRIC DIGRAPH. A complete asymmetric
of vertices.

n(n—1)
2

R) A complete asymmetric digraph of n vertices contains edges.

Definition 0.11.18 — BALANCED DIGRAPH. A digraph is said to be balanced if for
every vertex v;, the out-degree equals the in-degree; i.e., d ™ (v;) = d~ (v;).
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~

Definition 0.11.19 — REGULAR DIGRAPH. A balanced digraph is said to be regular if
every vertex has the same in-degree and out-degree as every other vertex.

Definition 0.11.20 — DIRECTED WALK. A directed walk from a vertex v; to v; is an
alternating sequence of vertices and edges, beginning with v; and ending with v;, such
that each edge is oriented from the vertex preceding it to the vertex following it.

p) Inadirected walk, no edge can appear more than once but vertices can appear any number of
times.

R) A directed walk which begins and ends in the same vertex is called a closed walk.

Rp) A directed walk, in which the end vertices are different, is called an open walk.

R) A directed path is a open directed walk in which no vertex appears more than once.

R) A closed directed walk in which no vertex appears more than once (except initial and terminal
vertices) is called a directed circuit.

R) A semi-directed circuit in a directed graph is a circuit in the corresponding undirected graph
but is not a directed circuit.

Example:

e; €10

Uy Vs

The sequence of vertices and edges vsegvsiegvaesvy is a directed path from vs to vy, whereas
vse7vaegvie vy has no such consistent direction from vs to vy and is a semi-path.

The sequence of vertices and edges viejviegvaes is a directed circuit, whereas viejviegvses is a

semi-directed circuit.




2

strongly connected if there is at least one directed path from every vertex to every other

8
I Definition 0.11.21 — STRONGLY CONNECTED DIGRAPH. A digraph G is said to be
vertex.

Example:

e e

RN

L

Definition 0.11.22 — WEAKLY CONNECTED DIGRAPH. A digraph G is said to be
weakly connected if its corresponding undirected graph is connected but G is not strongly
connected.

Example:

€ €y

LA 3

€

Rp) Adigraph G is connected means G may be strongly or weakly connected. A digraph that is
not connected is called as disconnected.

p) Each maximal connected (weakly or strongly) subgraph of a digraph G is said to be a
component of G. But within each component of G the maximal strongly connected subgraphs
are said to be fragments of G.

Example:

e
e 14

€3 Yey

Yo

€13

€9
e A2 3

o

&

Disconnected digraph with two components.



0.11 MATRIX REPRESENTATION OF GRAPHS 83

The component g; contains three fragments {e;, e, }, {es,eq,¢7,es}, and {ejo}. Here edges e3, e4
and eg do not appear in any fragments of g;.

digraph G is a digraph in which each strongly connected fragment is replaced by a vertex
and all directed edges from one strongly connected component to another are replaced

Definition 0.11.23 — CONDENSATION OF A DIGRAPH. The condensation G, of a
by a single directed edge.

p) The condensation of a strongly connected digraph is just a vertex.

p) The condensation of a digraph has no directed circuit.

m Example 0.23 Find the condensation of the following graph:

e
e 14

€3 Yey

12

€9
e | X 43

€10

Solution:

€

(e, e,) '/ﬁ/—.

(€11, €3, €13)

(83; 34 )

(65986) Ej, eg)

Definition 0.11.24 — ACCESSIBILITY. In a digraph a vertex b is said to be accessible (or
reachable) from vertex a if there is a directed path from a to b.

p ) Adigraph G is strongly connected if and only if every vertex in G is accessible from every
other vertex.
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Definition 0.11.25 — INCIDENCE MATRIX OF A DIGRAPH. The incidence matrix of a
digraph with n vertices, e edges and no self-loops is an n by n matrix A = [g;;], whose
rows correspond to vertices and columns correspond to edges, such that

1, if j*" edge is incident out of i vertex v; and
aij =4 —1, if j" edge is incident into i"" vertex v; and
0, otherwise

\.

m Example 0.24 Write the incidence matrix for the following digraph:

Uy

Solution:

v -1 -1 - 0o -l 0o o0 o0
v 0o o ! I 0 o0 -l 0
g ! 1 o o0 0 0 o0 0

Theorem 0.11.15 If A(G) is the incidence matrix of a connected digraph of n vertices, then the
rank of A(G) =n—1.

Theorem 0.11.16 The determinant of every square submatrix of the incidence matrix of a
digraph A is 1,—1 or 0.

Proof. The theorem can be proved by expanding the determinant of a square submatrix of A.
Consider a k by k submatrix M of A. If M has any column or row consisting of all zeros, det M is
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clearly zero. Also det M = 0 if every column of M contains two non-zero entries, 1 and —1.

Now if det M # 0 (i.e., M is non-singular matrix), then the sum of entries in each column of M
cannot be zero. Therefore, M must have a column in which there is a single non-zero element that
is either 1 or —1. Let this single element be in the (i, j)™ position in M. Thus

detM = +1 'Mij

where M;; is the submatrix of M with its i row and j™ column deleted. The (k—1) by (k—1)
submatrix M;; is also nonsingular (because M is nonsingular); therefore, it must also have at least
one column with a single non-zero entry, say in the (p,q)" position. Expanding det M; ; about this
element in the (p,q)™ position,

detM;; = *[determinant of a non-singular (k — 2) by (k—2) submatrix of M].
Repeated application of this procedure, we get
detM; = +1.

Hence the theorem. [ |

R) Any matrix with every square submatrix having a determinant of 1,—1 or 0 is called a
unimodular matrix.

Definition 0.11.26 — CIRCUIT MATRIX OF A DIGRAPH. Let G be a digraph with e
edges and g circuits (directed circuits or semicircuits). An arbitrary orientation (clockwise
or counterclockwise) is assigned to each of the ¢ circuits. Then a circuit matrix = [b;;]
of the digraph G is a g by e matrix defined as

1, if i*"circuit includes j* edge and the orientations of the edge
and circuit coincide,
bij =< —1, if i"*circuit includes j" edge but the orientations of the edge

and circuit are opposite,

0,  if i"*circuit does not include j""edge.

m Example 0.25 Write the circuit matrix for the following digraph:

Uy
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Solution: The graph has four different directed circuits:

®-{d.f.&}

@{c,e.8}

@{C7d7f7e}

®.{a,b}.

Therefore, its directed circuit matrix is a 4 by 8 matrix:

a b c d e f g h

@ 0 0 0 1 0 1 1 0]
@ 0 0 1 0 —1 0O 1 0F
© o011 -1 -1 =1 0 O
@ -1 10 0 0 00 O]

Theorem 0.11.17 Let B and A be, respectively, the circuit matrix and incidence matrix of a
self-loop-free digraph such that the columns in B and A are arranged using the same order of
edges. Then A-B” = B-AT = O, where superscript T denotes the transposed matrix.

Proof. Consider the m™ row in B and the k™ row in A. If the circuit m does not include any edge
incident on vertex k, the product of the two rows is clearly zero. On the other hand, if vertex & is in
circuit m, there are exactly two edges (say x and y) incident on k that are also in circuit m. This
situation can occur in only four different ways. (The other four cases with the orientation of m
reversed are identical to these when x and y are interchanged.)

(a) (b)

(c) (d)
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The possible entries in row & of A and row m of B in column positions x and y are tabulated for each
of these four cases.

Case Row & Row m Dot Product
Column x Column y Column x Column y Row k-Row m
(a) -1 1 1 1 0
(b) 1 —1 —1 —1 0
(©) —1 —1 1 ~1 0
d) 1 1 —1 1 0
In each case, the dot product is zero. Hence the theorem. |

Theorem 0.11.18 (Binet-Cauchy theorem) If Q and R are k by m and m by k matrices respec-
tively, with k£ < m, then the determinant of the product i.e.,
det(QR) = the sum of the products of corresponding major determinants of Q and R.

Example:
4 =3 =3 P
0=[:2 “l 0:| and R=|-2 0(;
i -2

4 -3 1 -1 4 -2
- ; d
det(QR) = det |:2 B 1] det [_2 0:| -+ det |:2 0]

1 -1 -3 -2 -2 0
; det -det
det |:3 _2} + de [_1 0} e |: 3 ~2]

= Do) bdie] - (—Dd = &

Theorem 0.11.19 Let Ay be the reduced incidence matrix of a connected digraph. Then the
number of spanning trees in the graph equals the value of the det(Af A?)

Proof. According to the Binet-Cauchy theorem,
det(As AJTC) = sum of the products of all corresponding majors of A and AJTC.
Every major of Ay or AJTC is zero unless it corresponds to a spanning tree, in which case its value

is 1 or —1. Since both majors of Ay and A? have the same value +1 or —1, the product is +1 for
each spanning tree. |

Definition 0.11.27 — ADJACENCY MATRIX OF A DIGRAPH. Let G be a digraph with
n vertices, containing no parallel edges. Then the adjacency matrix X = [x;;] of the
digraph G is an n by n (0, 1)-matrix defined as

_J 1, if there is an edge directed from i"" vertex to j"vertex,
Y 0, otherwise.
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p) X isasymmetric matrix if and only if G is a symmetric digraph.

p) Every non-zero element on the main diagonal represents a self-loop at the corresponding
vertex.

p) There is no way of showing parallel edges in X. This is why the adjacency matrix is defined
only for a digraph without parallel edges.

p) The sum of each row equals the out-degree of the corresponding vertex, and the sum of each
column equals the in-degree of the corresponding vertex. The number of non-zero entries in
X equals the number of edges in G.

m Example 0.26 Write the adjacency matrix for the following digraph:

4

Solution:
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ENUMERATION OF GRAPHS

Enumeration means counting or numbering.
All graph-enumeration problems tackle into two types:
1. Counting the number of different graphs (or digraphs) of a particular kind, e.g., all connected,
simple graphs with eight vertices and two circuits.
2. Counting the number of subgraphs of a particular type in a given graph G, such as the number
of edge-disjoint paths of length k between vertices a and b in G. e.g., a matrix representation
of graph G and manipulations of this matrix.

. n!
R) ()="C= (EDI and "G, ="Cpy

nin—1)
Theorem 0.11.20 The number of simple, labelled graphs of n vertices is 2~ 2

Proof. The numbers of simple graphs of n vertices and 0,1,2, ..., edges are obtained by

nn—1)
2

) n(n—1)

n(n— _ ) 5
for e in expression

substituting 0,1,2, ..., . The sum of all such numbers is the

e
number of all simple graphs with n vertices. Then the use of the following identity proves the
theorem:
Ve (e (e (8 ) () =
0 1 2 k—1 k)
|
2" Proof:

n

Proof. The maximum number of edges possible in a simple graph with n vertices is (2) where
(,,) _ nn—1)
2 2 :
n(n—1)

.. The number of simple graphs possible with n vertices = 20) = 2", |

p) The maximum number of simple, labelled graphs possible with n vertices and e edges is
BN
e

m Example 0.27 Find the number of simple labelled graphs with 5 vertices and 6 edges.
Solution: Here n =5 and e = 6.

Then (5= () = 24 10

" 10
The number of simple, labelled graphs possible with n vertices and e edges= <(2)) = < 6 ) =
e

3
()= 52 -()-() -
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COUNTING LABELLED TREES

Theorem 0.11.21 There are n" 2 labelled trees with n vertices (where n > 2).

Proof. Let the n vertices of a tree T be labelled as 1,2, 3, .....,n. Remove the pendant vertex (and
the edge incident on it) having the smallest label, which is aj, (say). Suppose that b; was the vertex
adjacent to a;. Among the remaining n — 1 vertices, let a; be the pendant vertex with the smallest
label, and b, be the vertex adjacent to a;. Remove the edge (az,b;). This operation is repeated on
the remaining n — 2 vertices, and then on n — 3 vertices and so on. The process is terminated after
n — 2 steps, when only two vertices are left. The tree T defines the unique sequence

(bl,bz,bg, ....... ,bnfz) — (1)

Conversely, given a sequence (1) of n — 2 labels, an n-vertex tree can be constructed uniquely, as
follows: Determine the first number in the sequence

1,2,3,...n —(2)

that does not appear in sequence (1). This number is a;. And thus the edge (a;,b;) is defined.
Remove b; from sequence (1) and a; from (2). In the remaining sequence of (2) find the first
number that does not appear in the remainder of (1). This would be ay, and thus the edge (a2,b,) is
defined. The construction is continued till the sequence (1) has no element left. Finally, the last two
vertices remaining in (2) are joined.

For each of the (n— 2) elements in sequence (1) we can select any one of n numbers, thus
forming

n" 2 — (3)

(n—2)-tuples, each defining a distinct labelled tree of n vertices. And since each tree defines one
of these sequences uniquely, there is a one-to-one correspondence between the trees and the n'* >
sequences. Hence the theorem. |

p) A vertex i appears in sequence (b1,b2,b3, ....... ,by_») if and only if it is not pendant vertex.

m Example 0.28 Construct a sequence for the following tree:

& -

O
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Solution:
8 8 8
7 4 7
® * ®
9 9 9
O O 0O
5 5 5
®3
®3 o a : b9 3
4 \/ ) \
b b2 was3
11 1 1
8 8 8
7 7 7
@ ag
9 . ¢ Q
(‘l (‘ ao )
bylS b 5 bs" 5
a,®3
8
8
b7 3
9
ar
5

Remove the pendant vertex having the smallest label, which is 2 (= ay).
1 (= by) is the vertex adjacent to (= a;). Remove a;

Among the remaining n — 1 =9 — 1 = 8 vertices, 4 (= ay) is the pendant vertex with the smallest

label and 1 (= by) is the vertex adjacent to (ay). Remove a;.

Among the remaining n —2 =9 — 2 = 7 vertices, 1 (= a3) is the pendant vertex with the smallest

label and 3 (= b3) is the vertex adjacent to (a3). Remove as.

Among the remaining n — 3 = 9 — 3 = 6 vertices, 3 (= a4) is the pendant vertex with the smallest

label and 5 (= b4) is the vertex adjacent to (a4). Remove ag.

Among the remaining n —4 = 9 — 4 = 5 vertices, 6 (= as) is the pendant vertex with the smallest

label and 5 (= bs) is the vertex adjacent to (as). Remove as.

Among the remaining n —5 =9 — 5 = 4 vertices, 7 (= ae) is the pendant vertex with the smallest

label and 5 (= bg) is the vertex adjacent to (ag). Remove ag.
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Among the remaining n — 6 = 9 — 6 = 3 vertices, 5 (= a7) is the pendant vertex with the smallest
label and 9 (= b7) is the vertex adjacent to (a7). Remove a;.

Now, only one edge is left. Stop the process.

Hence, the required sequence is (1,1,3,5,5,5,9). n

m Example 0.29 Construct a sequence for the following tree:

Solution:

5

Remove the pendant vertex having the smallest label, which is 2 (= ay).

4 (= by) is the vertex adjacent to (= a;). Remove a;

Among the remaining n — 1 =7 — 1 = 6 vertices, 5 (= ay) is the pendant vertex with the smallest
label and 4 (= by) is the vertex adjacent to (a;). Remove a;.

Among the remaining n — 2 =7 — 2 = 5 vertices, 4 (= a3) is the pendant vertex with the smallest
label and 3 (= b3) is the vertex adjacent to (a3). Remove as.

Among the remaining n — 3 = 7 — 3 = 4 vertices, 3 (= a4) is the pendant vertex with the smallest
label and 1 (= b4) is the vertex adjacent to (a4). Remove ag.

Among the remaining n — 4 = 7 — 4 = 3 vertices, 6 (= as) is the pendant vertex with the smallest
label and 1 (= bs) is the vertex adjacent to (as). Remove as.

Now, only one edge is left. Stop the process.

Hence, the required sequence is (4,4,3,1,1). "
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= Example 0.30 Construct a seven-vertex tree for the sequence (4,4,3,1,1).

Solution:

Given sequence is (4,4,3,1,1) — (1).

Find the first number in the sequence 1,2,3,4,5,6,7 — (2),

that does not appear in sequence (1). This number clearly is 2. And thus the edge (2,4) is defined.
Remove 4 from sequence (1) and 2 from (1). In the remaining sequence of (2) find the first number
that does not appear in the remainder of (1). This would be 5, and thus the edge (5,4) is defined.
The construction is continued till the sequence (1) has no element left. Finally, the last two vertices
remaining in (2) are joined.

we can construct a seven-vertex tree as follows: (2,4) is the first edge. The second is (5,4). Next,
(4,3). Then (3,1), (6,1), and finally (7,1).

» Example 0.31 Construct a nine-vertex tree for the sequence (1,1,3,5,5,5,9).
Solution:
Please try yourself. "

Theorem 0.11.22 The number of different rooted, labelled trees with »n vertices is L

Examples: Rooted labelled trees of one, two and three vertices:

n Labelled free trees Labelled rooted trees

1 ° v

| h

PRI
e
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OO0 | BSCMTC 359

Credit Based VI Semester B.Sc. Degree Examination, April/May 2017
(Semester Scheme) (2016 — 17 Batch Onwards)
MATHEMATICS

Graph Theory (Special Paper 8a)

Time : 3 Hours _ Max. Marks : 120

Instructions: 1) Answerany ten questions from (Part —A). Each question
carries 3 marks.
2) Answer five full questions from (Part — B) choosing
one full question from each Unit.
3) Scientific calculators are allowed.

PART-A ' (10x3=30)

1. If a graph has exactly two vertices of odd degree, then prove that there must be
a path joining these two vertices.

2. Define a spanning tree and draw any two spanning trees of the following graph,
which are not isomorphic.

A V3

v, V,
3. Define the terms:
a) Eulergraph
b) Complete graph.

4. Prove that the vertex connectivity of any graph G can never exceed the
edge connectivity of G.

P.T.O.
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10.

11.

Define planar and non-planar graphs and give an example of a non-planar graph.
Draw the geometric dual of the graph below.

V2 V3

V4 Va

Define reduced incidence matrix and prove that the reduced incidence matrix of
atree is non-singular.

Write the path matrix B | for the vertices v, and v, in the following graph.

Define cut set matrix of a graph G. How are the parallel edges in G represented
in the cut set matrix ?

Define :
a) Proper colouring of a graph. -

b) Chromatic number.

Write the chromatic polynomial of :
i) acomplete graph with 4 vertices

ii) a tree with 15 vertices.




A 00 -3 BSCMTC 359

12. Write the chromatic number of the following graphs :

a) b)

L4

13. Define strongly connected and weakly connected digraphs with examples.

14. Find the sequence associated with the 7-vertex tree labelled below.

6

15. Find the number of simple labelled graphs with 5 vertices and 6 edges.

PART-B
Unit -1
1. a) Prove thata simple graph with n vertices and k components can have at most
(n—k)(n—k+1)

dges.
5 edges 6
b) Provethata graph is a tree if and only if it is minimally connected. 6
c) Definea fundamental circuit and list all the fundamental circuits with respect
to the spanning tree T = {a, g, b, k, ¢} of the following graph. 6
b
a
h
g k
f d
e
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2. a) Provethata connected graph Gis an Euler graph if and only if all the vertices
of G are of even degree.

b) i) Prove that the number of vertices in a binary tree is odd.
i)y Prove thatany connected graph with n vertices and (n— 1) edges isatree. 6

c) Define distance between two vertices ina graph and show that distance

6

between vertices ina connected graphis a metric. 6
Unit =1l
3. a) With respect to agiven spanning tree T, prove that a chord ¢ that determin_es
a fundamental circuit I" occurs in every fundamental cut set associated with
the branches in I, and in no other. 6
b) Prove that Kuratowski’s second graph K3 3 is non-planar. _ 6
c) Defineacutsetina connected graph G and list all the cut sets inthe following
graph. g 6
b ,
f d C
e
4. a) Provethatina connected planar graph with n vertices, e edges, there aré
e —n + 2 regions. 6
b) Provethata graph canbe embedded in the surface of a sphere if and only if it
can be embeddedina plane. 6
c) Prove thatina graph every circuit has an even number of edges in common
with any cut set. . _ 6
| Unit - 1l
5. a) ;rzv—e :hat the rank of the incidence matrix of a connected graph of n vertices
o 6
b) Defme- a circuit matrix of a graph and write the circuit matrix of the following
graph:
h e a 6
f D
| b
d

c) Prove that the rank of the cut set matrix C (G) of a
e edges is equal to the rank of incidence mat)rix A(gf)aph G of n vertices and
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6. a .
) Prove that the ring sum of two circuits in a graph G is either a circuit or an

edge disjoint union of circuits. 6
b) Let B and A be respectively the circuit matrix and the incidence matrix of a
self Ioop.free graph whose columns are arranged in the same order of edges.
- Thenprovethat o. BT =0 (mod 2)- 6
c) Write the adjacency matrix of the following graph. ” €
Ya Vs
Ve
V1 V4 ad V5
Unit-1V
7. a) Prove that every tree with two or more vertices is 2 — chromatic. 6
b) Write the chromatic polynomial of the following graph with explanation.
a b
d o]
c) Prove that a‘graph with at least one edge is 2 - chromatic if and only if it has
6

no circuits of odd length.

L
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8. a) Prove thata graph on n vertices is a complete graph if and only if its chromatic
polynomialis P,(A) = AMA-1)(A-2)...(A-n+1).

b) Prove that for a tree with n vertices, the chromatic polynomial is

P.(A)=a-1)"".
¢) Find the chromatic polynomial of the graph given below.
/,-V2
\
V¢ ‘\‘*Va
| v,

Y |
Vs

Unit-V

9. a) Show that the determinant of every square submatrix of the incidence matrix
of a diagraphis 1, -1 or 0.

b) Define incidence matrix of a digraph and write the incidence matrix of the

following digraph.
v h V3
a | RN
,/,." “ . V4
ﬁ' e
V1. .,‘C
b' " , N, - 9
Vg d Vs

c) LetA;bethe reduced incidence matrix of a connected digraph. Then prove
that the number of spanning trees in the graph equals the value of det(A, . A)
f - Ay )

6



c) LetBaﬂAberespecﬁvelyﬂ\edrcuitmauﬁandmeinddenceMxofa
selbOpfreetigraphwchmafmecolumnsinBandAareanangedinthe
Same order of edges. Then prove that A- BT = B- AT=0. 6
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c. Degree Examination, May 2018
: MATHEMATICS

wards) Paper - VIII (a)

Graph Theory
me : 3 Hours
|

” Max. Marks : 120
?tructions * 1) Answer any ten questions from p

art A. Each question carrics 3

marks,

2)  Answer to Part A should be Wwritten in the first few pages of the
answer book before answers to Part B,

3)  Answer five full questions from Part B choosing one full question
from each Unit.

4)

Scientific calculators are allowed.
Part- A [10 x 3 =30
) Define
'A a) Hamiltonian Circuit.

b) Fundamental circuit in a connected graph G.

) Find the center of the graph by finding eccentricity of each vertex in the following
ind the ce
graph.

—
V. va N

/ 3 o y

V, ¢
Iy two vertices of odd degree, then prove that there must be a

xactly
“a graph has ¢ o
) Lgthgjoming thesc two vertice

P.T.O.
J-55
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Q4) Define
a) Separable Graph
b) Planar Graph

) ver exceed the edg
05) Prove that the vertex connectivity of any graph G can ne

connectivity of 6.

06) Listany three fundamental cutsets of the following graph with respect to the spanning

tree {b, e, c, h, k}.

Q7) Prove that the reduced incidence matrix of a tree is nonsingular.
08) Write the path matrix P (V , V,) for the following graph.

VM b V:’
a C

\%
VL; A V3

09) Draw the graph whose adjacent matrix is given below,

Y 1 VZ VJ V4
vV, [1 0 1 ¢
vV, [0 0 1
V3 1 1 0 0
Vo 101 0 o

MU-55 2.
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Q10) Define
a)  Proper colouring

b) Chromatic Number of 5 graph

Q11) Write the chromatijc number for the following graphs
a)
t &
Yy v Vi, V¢

by G
v
2 PN Vg
V- .
3 G vy
)

Q12) What is the chromatic polynomial of a tree with 10 vertices?
Q13) Define asymmetric digraph with an example.

Q14) Define balanced digraph and write the in degree and out degree of each vertex in

the following graph.
" U, Uy
i : mug‘
Vs Yy

Q15) Draw the labelled trec with respect to the sequence [1, 4, 11].

-3-
MU-55



QI16)a)

b)

017)a)

b)

018)a)

b)

019)2)

b)

MU-55
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Part - B

UNIT -1

a connected graph G is an Euler graph if and
[6]

Define Euler Graph. Prove that
only if all vertices are of even degree.

Define a spanning tree. Prove thata graph G is atree if and only if there 1s one
and only one path between every pair of vertices. [6]
Prove that a graph G is a tree if and only if it is minimally connected. [6]

Prove that a simple graph with n vertices and k components can have atmost

(n-k)(n-k+1)
2

cdges. [6]
Define distance in a graph. Prove that distance between two vertices in a
connected graph is a metric. [6]

Define Pendent vertex. Prove that there are at least two pendant vertices in a
tree. _ [6]

UNIT - 11
Prove that a connected planar graph with n vertices and e edges has e-n+2
regions. [6]
Prove that a complete graph of five vertices is nonplanar. [6]

Prove that a graph can be embedded in the surface of a sphere if and only ifit
can be embedded in a plane. [6]

Prove that every cutset has even number of cdges in common with any circuit.

6]
Define vertex connectivity and edge connectivity Using Eulers formula prove
that K, is nonplanar. (6]

Prove that with respect to a given spanning tree T, a branch b, that determines

a fundamental. Cutset S is contained in every fundamental mrcunt associated
writh the chords in S and in no other. (6]

-4-



020)a)

b)

021)a)

b)

Q22)a)
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- [6]
=rank of the incidence matrix

[6]
Write the adjacency matrix of the following graph,

[6]
v, v,
v @ Ve
V3 Vb'
If A and B are Incidence and circyit matrix of a graph G without se|f loops
whose columns are arranged using same order of edges :

Prove that the ring sum of two ¢

ircuits in a graph G is either a circuit or
edge disjoint union of circuits,

an
[6]
owing graph with respect to the
[6]

Write the fundamental circuit matrix of the foll
spanning tree {e, e, e, e,

7 & s e, v
S po
) G

UNIT - IV

aph with at least one edge is two chromatic if and only if it has
ve thata gr :
E;ocircuits of odd length. l
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phifand only if its chromatic

- erticesisacomplete
b) Provethatagraph withnvertiotS % iog;p gra G-n+1) [6]
polynomial is P, (V) = A1) A= 2) e :
; i h with explanation. [6]
¢) Writethe chromatic polynomial of the following grap P
v
Vy \,3
\
A 6
023)a) Prove that every tree with two or more vertices is 2-chromatic. [6]
b) Prove that for a tree with n vertices, chromatic polynomial is
P.(A)=A( -1 - [6]
¢) Find the chromatic polynomial of the graph. [6]
’ A
i)
UNIT-V

024)a) Prove that the determinant of i inci i
of a digraph s —1. L. orb. every square submatrix of the incidence mat[rg;

b) Prove that there are n"2 labelled trees with n vertices, n > 2 6]
MU-55 -6- o |
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025)a)

b)

MU-55
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Define 4 ci

roult matrx ofa ite the circuit matri followin
digraph, alrix of a digraph. Write thg ?erUIt matrix of the follow [6?

LetBand A be respectively the circy

loop free digraph such that the col
order of edges. Then p

it matrix and the incidence matrix of a self
umns in B and A are arranged in the same
rove that A. BT= B AT= 0.
Let Af be the reduced in

cidence matrix of a connected digraph. Then prove
that the number of spann

ing trees in the graph equals the value of det (AAD).
[6]

Define incidence matrix ofa digraph. Draw the digraph for following incidence

matrix. (6]

a b ¢ d e f g h
Vi[o o 0o -1 0 1 o o]

0 1 -1 1 -1

V,]0 0 0

3
V-1 -1 -1 0 -1 0 0 o0
4

5

6L

AVAVAVAV/

-7-
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VI Semester B.Sc. Degree Ekamination, April/May 2019
(Credit Based Semester Scheme)
(201 6-17 Batch onwards)
MATHEMATICS
Paper VIII(a) - Graph Theory

Time : 3 Hours] [Max. Marks : 120

Note : A single answer booklet containing 40 pages will be issued, No additional

sheets will be issued.

Instructions : 1. Answer ariy ten questions from Part A. Each question carries

3 marks.

2. Answer to Part A should be written in the first few pages of the
main answer book, before Part B.

3. Answer five full quesiions Sfrom Part B choosing One full question
Jfrom each Unit. ;

4. Scientific calculators are allowed.

PART - A

Answer any ten questions : (10 x 3 = 30)

1. In a binary tree T of ‘n’ vertices, prove that the number of pendant vertices is
' n+1

—
2.  Prove that the number of vertices having odd degree in a graph is even.

Find the centre of the graph given below by finding eccentricity of each vertex :

V, V,

1 P.T.O.
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4.

S.

10.

11.

Define (a) Vertex connectivity of a graph (b) Fundamental cutset in a graph.

If any simple planar graph with f regions, n vertices and e edges, prove that

e<3n-6.

Prove that edge connectivity of a graph G cannot exceed the degree of the

vertex with the smallest degree in G.
Define cutset matrix of a connected graph G.
Write the path matrix P(v,v;) of the following graph : -

¥y . .;d - v,

~— S | v,

V.

Prove that the reduced incidence matrix of a tree is non-singular.

Define : (a) Proper colouring of a graph (b) Chromatic number of a graph.

Write the chromatic polynomial of the following graphs :

(@)

(b)
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12. Write the chromatic number 6f the folld;aviﬁg graphs :

()

(b)

13. Prove that the number of simple labelled graphs of n vertices is 2n(n_2—ll.

14. Draw the circuit matrix of the following digraph :

15. Define the terms :
(a) - Balanced digraph

(b) Symmetric digraph
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16.

17.

18.

(2)

(b)
(©

()

(b)

(c)

PART - B
UNIT I
Prove that a given connected graph G is an Euler graph if and only if all
vertices of G are of even degree.

If G is a simple graph with ‘n’ vertices and &’ components, prove that
(n- k)(; -k+1) e—

G can have at most

Define a spanning tree and show that every connected graph has at least

one spanning tree. (6 +6 +6)

Define distance between two vertices in a graph and show that distance

between vertices in a connected graph is a metric.

Prove that a tree with n vertices has » -1 edges.

Define a fundamental circuit and list any five fundamentals circuits of
the following graph with respect to a spanning tree {b,b,,0;,0,,b5.b} :
(6 +6 +6)

UNIT II

Prove that Kuratowski’s second graph K, is non-planar.
Prove that a connected planar graph G with n vertices, e edges, thiere are
e —n+2 regions.

Prove that every circuit has an even number of edges in common with
any cutset. (6 + 6 + 6)
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19. (a) Prove that a graph can be embedded in the surface of a sphere if and
only if it can be embedded in a plane.

(b) Prove that with respect to any spanning tree T, a chord C; that

determines a fundamental circuit I occurs in each fundamental cutset
associated with the branches and in no other.

(c) Draw a geometric dual of the following graph : (6 + 6 +6)

Vs

UNIT III
20. (a) Write the adjacency matrix of the following graph :

e

(b) Prove that the ring sum of two circuits in a graph is either a circuit or an
edge disjoint union of circuits.

(c) If Bis a circuit matrix of a connected graph G with n vertices and e

edges, then prove rank of B=e—-n+1. (6 +6+6)

5
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21. (a)
(b)
(©
22. (a)
(b)

(c)

Let B and A be respectively the circuit matrix and the incidence matrix of
a self-loop free graph whose columns are arranged using the same order
of edges. Prove that every row of A is orthogonal to every row of B, that is

A-B" =0(mod?2).

Write the incidence matrix of the following graph :
V;

€s

Prove that ting sum of any two circuits in a graph G is either a circuit or
an edge disjoint union of circuits. (6 +6 +6)

UNIT IV

Prove that a graph on n vertices is a complete graph if and only if its

chromatic polynomial is £,(4) = AMA-1)...(A-n+]).
Find the chromatic polynomial of the following graph :

V2 »
Vs
Vs
A\
Prove that a graph with at least one edge is two chromatic if and only if it
has no circuits of odd length. (6 +6 +6)
6
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23. (a) Prove that every tree with two or more vertices is two chromatic.

(b) Let a and b be two non-adjacent vertices in a graph G. Let G’ be a graph
obtained by adding an edge between a and b and G" be a simple graph
obtained from G by fusing the vertices a and b together and replacing
sets of parallel edges with a single edge. Prove that F,(4) of G=P,(4) of

G'+P,_(A) of G".

(c) Prove that a graph of ‘n’ vertices is a tree if and only if its chromatic
polynomial is P,(1)= AA-D"". (6 +6 + 6)

UNIT V

24. (a) Prove that the determinant of every square submatrix of the incidence
matrix of a digraph is -1, 1 or O.

(b) Prove that there are n""? labelled trees with n vertices n>2.

(c) Define an incidence matrix of a digraph and draw the digraph for the
incidence matrix given below :

a b ¢ d e
v(1 o O -1 0
v,|-1 1 0 0 1
v, |0 -1 1 0 O (6 +6 +6)
v, 0 0 -1 1 -1

25. (a) Let Band A be respectively the circuit matrix and the incidence matrix of
a self-loop tree digraph such that columns in B and A are arranged in
the same order of edges. Then prove that A-B” =B. AT = 0.

(b) Let 4, be the reduced incidence matrix of a connected digraph. Prove
that the number of spanning trees in a graph equals the value of the
det(4, -A;).

() Construct a 9 vertex labelled tree which yields the sequence.

(1,1,3,5,5,5,9) (6 +6 +6)
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