
Unit- I

Interrupts Programming in 8051

[Interrupts vs polling, Sources of interrupts, vector table, enabling and disabling, TCON and IE registers,

interrupt priority, IP register, programming external interrupts (Level and edge triggering), programming

serial communication interrupts (Mode1) and timer interrupts (mode1) (Use ALP and C during

programming)]

Introduction

 Interrupt is one of the most important and powerful concepts and features

in microcontroller/processor applications. Almost all the real world and real time systems

built around microcontrollers and microprocessors make use of interrupts.

 The interrupts refer to a notification, communicated to the controller, by a

hardware device or software, on receipt of which controller momentarily stops and responds

to the interrupt. Whenever an interrupt occurs the controller completes the execution of the

current instruction and starts the execution of an Interrupt Service Routine (ISR) or

Interrupt Handler. ISR is a piece of code that tells the processor or controller what to do

when the interrupt occurs. After the execution of ISR, controller returns back to the

instruction it has jumped from (before the interrupt was received). The interrupts can be

either hardware interrupts or software interrupts.

 Interrupts vs polling

An application built around microcontrollers generally has the following structure. It takes

input from devices like keypad, ADC etc; processes the input using certain algorithm; and

generates an output which is either displayed using devices like seven segment, LCD or used

further to operate other devices like motors etc. In such designs, controllers interact with the

inbuilt devices like timers and other interfaced peripherals like sensors, serial port etc. The

programmer needs to monitor their status regularly like whether the sensor is giving output,

whether a signal has been received or transmitted, whether timer has finished counting, or if

an interfaced device needs service from the controller, and so on. This state of continuous

monitoring is known as polling.

 In polling, the microcontroller keeps checking the status of other devices; and while

doing so it does no other operation and consumes all its processing time for monitoring. This

problem can be addressed by using interrupts. In interrupt method, the controller responds to

only when an interruption occurs. Thus in interrupt method, controller is not required to

regularly monitor the status (flags, signals etc.) of interfaced and inbuilt devices.

 To understand the difference better, consider the following. The polling method is

very much similar to a salesperson. The salesman goes door-to-door requesting to buy its

product or service. Like controller keeps monitoring the flags or signals one by one for all

devices and caters to whichever needs its service. Interrupt, on the other hand, is very similar

to a shopkeeper. Whosoever needs a service or product goes to him and apprises him of

his/her needs. In our case, when the flags or signals are received, they notify the controller

that they need its service.

http://www.engineersgarage.com/microcontroller
http://www.engineersgarage.com/tutorials/timers-8051-timer-programming-tutorial

Comparison Chart

BASIS FOR

COMPARISON
INTERRUPT POLLING

Basic Device notify CPU that it needs

CPU attention.

CPU constantly checks device

status whether it needs CPU's

attention.

Mechanism An interrupt is a hardware

mechanism.

Polling is a Protocol.

Servicing Interrupt handler services the

Device.

CPU services the device.

Indication Interrupt-request line indicates that

device needs servicing.

Comand-ready bit indicates the

device needs servicing.

CPU CPU is disturbed only when a

device needs servicing, which saves

CPU cycles.

CPU has to wait and check

whether a device needs servicing

which wastes lots of CPU cycles.

Occurrence An interrupt can occur at any time. CPU polls the devices at regular

interval.

Efficiency Interrupt becomes inefficient when

devices keep on interrupting the

CPU repeatedly.

Polling becomes inefficient when

CPU rarely finds a device ready

for service.

Example Let the bell ring then open the door

to check who has come.

Constantly keep on opening the

door to check whether anybody

has come.

Hardware and Software interrupt

The interrupts in a controller can be either hardware or software. If the interrupts are

generated by the controller’s inbuilt devices, like timer interrupts; or by the interfaced

devices, they are called the hardware interrupts. If the interrupts are generated by a piece of

code, they are termed as software interrupts.

 Multiple interrupts

What would happen if multiple interrupts are received by a microcontroller at the same

instant? In such a case, the controller assigns priorities to the interrupts. Thus the interrupt

with the highest priority is served first. However the priority of interrupts can be changed

configuring the appropriate registers in the code.

 Sources of interrupts

The 8051 controller has six hardware interrupts of which five are available to the

programmer. These are as follows:

Fig. 1: Image showing 8051 Interupts

1. RESET interrupt – This is also known as Power on Reset (POR). When the RESET

interrupt is received, the controller restarts executing code from 0000H location. This is an

interrupt which is not available to or, better to say, need not be available to the programmer.

 2. Timer interrupts – Each Timer is associated with a Timer interrupt. A timer interrupt

notifies the microcontroller that the corresponding Timer has finished counting.

3. External interrupts – There are two external interrupts EX0 and EX1 to serve external

devices. Both these interrupts are active low. In AT89C51, P3.2 (INT0) and P3.3 (INT1)

pins are available for external interrupts 0 and 1 respectively. An external interrupt notifies

the microcontroller that an external device needs its service.

 4. Serial interrupt – This interrupt is used for serial communication. When enabled, it

notifies the controller whether a byte has been received or transmitted.

Types of interrupt in 8051 Microcontroller

Let's see the five sources of interrupts in 8051 Microcontroller:

o Timer 0 overflow interrupt - TF0

o External hardware interrupt - INT0

o Timer 1 overflow interrupt - TF1

o External hardware interrupt - INT1

o Serial communication interrupt - RI/TI

The timer and serial interrupts are internally produced by the microcontroller, whereas the

external interrupts are produced by additional interfacing devices or switches that are

externally connected with the microcontroller. These external interrupts can be level

triggered or edge triggered.

Interrupt Vector Table

Every interrupt is assigned a fixed memory area inside the processor/controller. The Interrupt

Vector Table (IVT) holds the starting address of the memory area assigned to it

(corresponding to every interrupt).

 The interrupt vector table (IVT) for AT89C51 interrupts is as follows :

Interrupt ROM Location (Hex) Pin Flag clearing

http://www.engineersgarage.com/at89c51-or-89c51-microcontroller
http://www.engineersgarage.com/microcontroller/8051projects/interface-serialport-RS232-AT89C51

Reset 0000 9 Auto

External interrupt 0 0003 12 Auto

Timer interrupt 0 000B – Auto

External interrupt 1 0013 13 Auto

Timer interrupt 1 001B – Auto

Serial COM interrupt 0023 – Programmer clears it

 When an interrupt is received, the controller stops after executing the current

instruction. It transfers the content of program counter into stack. It also stores the current

status of the interrupts internally but not on stack. After this, it jumps to the memory location

specified by Interrupt Vector Table (IVT). After that the code written on that memory area

gets executed. This code is known as the Interrupt Service Routine (ISR) or interrupt

handler. ISR is a code written by the programmer to handle or service the interrupt.

 Enabling and disabling

Upon Reset, all the interrupts are disabled even if they are activated. The interrupts must be

enabled using software in order for the microcontroller to respond to those interrupts.

IE (interrupt enable) register is responsible for enabling and disabling the interrupt. IE is a

bit addressable register.

Interrupt Structure of 8051 Microcontroller

After 'RESET' all the interrupts get disabled, and therefore, all the interrupts is enabled by

software. From all the five interrupts, if anyone or all interrupt are activated, this will sets the

corresponding interrupt flags as represent in the figure which corresponds to Interrupt

structure of 8051 microcontroller:-

All the interrupts can be set or cleared by some special function register that is also known as

interrupt enabled (IE), and it is totally depends on the priority, which is executed by using

interrupt priority register.

Interrupt Enable (IE) Register

IE register is used for enabling and disabling the interrupt. This is a bit addressable register

in which EA value must be set to one for enabling interrupts. The individual bits in this

register enables the particular interrupt like timer, serial and external inputs. Consider in the

below IE register, bit corresponds to 1 activate the interrupt and 0 disable the interrupt.

TCON Register:

Timer Control or TCON Register is used to start or stop the Timers of 8051 Microcontroller.

It also contains bits to indicate if the Timers has overflowed. The TCON SFR also consists

of Interrupt related bits.

The following table gives the description of each bit in the TCON SFR.

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when timer/counter 1

overflows. Cleared by hardware as the processor vectors to the interrupt service routine.

TR1 TCON.6 Timer 1 run control bit. Set/cleared by software to turn

timer/counter 1 on/off.

TF0 TCON.5 Timer 0 overflow flag. Set by hardware when timer/counter 0

overflows. Cleared by hardware as the processor vectors to the service routine.

TR0 TCON.4 Timer 0 run control bit. Set/cleared by software to turn

timer/counter 0 on/off.

IE1 TCON.3 External interrupt 1 edge flag. Set by CPU when the

external interrupt edge (H-to-L transition) is detected. Cleared by CPU when the interrupt is

processed. Note: This flag does not latch low-level triggered interrupts.

IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to

specify falling edge/low-level triggered external interrupt.

IE0 TCON.1 External interrupt 0 edge flag. Set by CPU when external

interrupt (H-to-L transition) edge is detected. Cleared by CPU when interrupt is

processed. Note: This flag does not latch low-level triggered interrupts.

IT0 TCON.0 Interrupt 0 type control bit. Set/cleared by software to specify

falling edge/low-level triggered external interrupt.

Figure 11-6. TCON (Timer/Counter) Register (Bit-addressable)

ITO and IT1

TCON.O and TCQN.2 are referred to as ITO and IT 1, respectively. These two bits set the

low-level or edge-triggered modes of the external hardware interrupts of the INTO and INT1

pins. They are both 0 upon reset, which makes them low-level triggered. The programmer

can make either of them high to make the external hardware interrupt edge-triggered. In a

given system based on the 8051, once they are set to 0 or 1 they will not be altered again

since the designer has fixed the interrupt as either edge- or level-triggered.

IE0 and IE1

TCON.L and TCON.3 are referred to as IEO and IE1, respectively. These bits are used by

the 8051 to keep track of the edge-triggered interrupt only. In other words, if the ITO and

IT1 are 0, meaning that the hardware interrupts are low-level triggered, IEO and IE1 are not

used at all. The IEO and IE1 bits are used by the 8051 only to latch the high-to-low edge

transition on the INTO and INT1 pins. Upon the edge transition pulse on the INT0 (or INT1)

pin, the 8051 marks (sets high) the IE* bit in the TCON register, jumps to the vector in the

interrupt vector table, and starts to execute the ISR. While it is executing the ISR, no H-to-L

pulse transition on the INTO (or INT1) is recognized, thereby preventing any interrupt inside

the interrupt. Only the execution of the RETI instruction at the end of the ISR will clear the

lEx bit, indicating that a new H-to-L pulse will activate the interrupt again. From this

discussion we can see that the IEO and IE1 bits are used internally by the 8051 to indicate

whether or not an interrupt is in use. In other words, the programmer is not concerned with

these bits since they are solely for internal use.

TRO and TR1

These are the D4 (TCON.4) and D6 (TCON.6) bits of the TCON register. We were

introduced to these bits in Chapter 9. They are used to start or stop timers 0 and 1,

respectively. Although we have used syntax such as “SETB TRx” and “CLR Trx”, we could

have used instructions such as “SETB TCON.4″ and “CLR TCON. 4″ since TCON is a bit-

addressable register. TFO and TF1

These are the D5 (TCON.5) and D7 (TCON.7) bits of the TCON register. We were

introduced to these bits in Chapter 9. They are used by timers 0 and 1, respectively, to

indicate if the timer has rolled over. Although we have used the syntax “JNB TFx, target”

and “CLR Trx”, we could have used instructions such as “JNB TCON. 5, target” and “CLR

TCON. 5″ since TCON is bit-addressable.

Interrupt priority

Interrupt priority upon reset

When the 8051 is powered up, the priorities are assigned according to Table . From Table

we see, for example, that if external hardware interrupts 0 and 1 are activated at the same

time, external interrupt 0 (INTO) is responded to first. Only after INTO has been serviced is

INT1 serviced, since INT1 has the lower priority. In reality, the priority scheme in the table

is nothing but an internal polling sequence in which the 8051 polls the interrupts in the

sequence listed in Table , and responds accordingly.

Interrupt Source Vector address Interrupt priority

External Interrupt 0 –INT0 0003H 1

Timer 0 Interrupt 000BH 2

External Interrupt 1 –INT1 0013H 3

Timer 1 Interrupt 001BH 4

Serial Interrupt 0023H 5

Interrupt Priority Register (IP)

 We can alter the interrupt priority by assigning the higher priority to any one of the

interrupts. This is accomplished by programming a register called IP (interrupt priority).

 Using IP register it is possible to change the priority levels of an interrupts by clearing or

setting the individual bit in the Interrupt priority (IP) register as shown in figure. It allows the

low priority interrupt can interrupt the high-priority interrupt, but it prohibits the interruption

by using another low-priority interrupt. If the priorities of interrupt are not programmed, then

microcontroller executes the instruction in a predefined manner and its order are INT0, TF0,

INT1, TF1, and SI.

The following figure shows the bits of IP register. Upon reset, the IP register contains all

0's. To give a higher priority to any of the interrupts, we make the corresponding bit in the

IP register high.

- - - - PT1 PX1 PT0 PX0

- IP.7 Not Implemented.

- IP.6 Not Implemented.

- IP.5 Not Implemented.

- IP.4 Not Implemented.

PT1 IP.3 Defines the Timer 1 interrupt priority level.

PX1 IP.2 Defines the External Interrupt 1 priority level.

PT0 IP.1 Defines the Timer 0 interrupt priority level.

PX0 IP.0 Defines the External Interrupt 0 priority level.

Programming external interrupts (Level and edge triggering)

The 8051 has two external hardware interrupts. Pin 12 (P3.2) and pin 13 (P3.3) of the 8051,

designated as INTO and INT1, are used as external hardware interrupts. Upon activation of

these pins, the 8051 gets interrupted in whatever it is doing and jumps to the vector table to

perform the interrupt service routine. In this section we study these two external hardware

interrupts of the 8051 with some examples.

Figure 11-4. Activation of INTO and INT1

External interrupts INTO and INT1

There are only two external hardware interrupts in the 8051: INTO and INT1. They are

located on pins P3.2 and P3.3 of port 3, respectively. The interrupt vector table locations

0003H and 0013H are set aside for INTO and INT1, respectively. They are enabled and

disabled using the IE register. There are two types of activation for the external hardware

interrupts: (1) level triggered, and (2) edge triggered. Let’s look at each one. First, we see

how the level-triggered interrupt works.

Level-triggered interrupt

In the level-triggered mode, INTO and INT1 pins are normally high (just like all I/O port

pins) and if a low-level signal is applied to them, it triggers the interrupt. Then the

microcontroller stops whatever it is doing and jumps to the interrupt vector table to service

that interrupt. This is called a level-triggered or level-activated interrupt and is the default

mode upon reset of the 8051. The low-level signal at the INT pin must be removed before

the execution of the last instruction of the interrupt service routine, RETI; otherwise, another

interrupt will be generated. In other words, if the low-level interrupt signal is not removed

before the ISR is finished it is interpreted as another interrupt and the 8051 jumps to the

vector table to execute the ISR again. Look at Example 11-5.

Example 11-5

Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes

low, it should turn on an LED. The LED is connected to PI .3 and is normally off. When it is

turned on it should stay on for a fraction of a second. As long as the switch is pressed low,

the LED should stay on.

Solution:

In this program, the microcontroller,is looping continuously in the HERE loop. Whenever

the switch on INT1 (pin P3.3) is activated, the microcontroller gets out of the loop and jumps

to vector location 0013H. The ISR for INT1 turns on the LED, keeps it on for a while, and

turns it off before it returns. If by the time it executes the RETI instruction, the INT1 pin is

still low, the microcontroller initiates the interrupt again. Therefore, to end this problem, the

INT1 pin must be brought back to high by the time RETI is executed.

Sampling the low level-triggered interrupt

Pins P3.2 and P3.3 are used for normal I/O unless the INTO and INT1 bits in the IE registers

are enabled. After the hardware interrupts in the IE register are enabled, the controller keeps

sampling the INT« pin for a low-level signal once each machine cycle. According to one

manufacturer’s data sheet “the pin must be held in a low state until the start of the execution

of ISR. If the INTn pin is brought back to a logic high before the start of the execution of

ISR there will be no interrupt.” However, upon activation of the interrupt due to the low

level, it must be brought back to high before the execution of RETI. Again, according to one

manufacturer’s data sheet, “If the INTw pin is left at a logic low after the RETI instruction of

the ISR, another interrupt will be activated after one instruction is executed.” Therefore, to

ensure the activation of the hardware interrupt at the INTw pin, make sure that the duration

of the low-level signal is around 4 machine cycles, but no more. This is due to the fact that

the level-triggered interrupt is not latched. Thus the pin must be held in a low state until the

start of the ISR execution.

Figure 11-5. Minimum Duration of the Low Level-Triggered Interrupt (XTAL = 11.0592

MHz)

Edge-triggered interrupts

As stated before, upon reset the 8051 makes INTO and INT1 low-level triggered interrupts.

To make them edge-triggered interrupts, we must program the bits of the TCON register.

The TCON register holds, among other bits, the ITO and IT1 flag bits that determine level-

or edge-triggered mode of the hardware interrupts. ITO and IT1 are bits DO and D2 of the

TCON register, respectively. They are also referred to as TCON.O and TCON.2 since the

TCON register is bit-addressable. Upon reset, TCON.O (ITO) and TCON.2 (III) are both Os,

meaning that the external hardware interrupts of INTO and INT1 pins are low-level

triggered. By making the TCON.O and TCON.2 bits high with instructions such as “SETB

TCON. 0″ and “SETB TCON. 2″, the external hardware interrupts of INTO and INT1

become edge-triggered. For example, the instruction “SETB CON. 2″ makes INT1 what is

called an edge-triggered interrupt, in which, when a high-to-low signal is applied to pin

P3.3, in this case, the controller will be interrupted and forced to jump to location 0013H in

the vector table to service the ISR (assuming that the interrupt bit is enabled in the IE

register).

Look at Example 11-6. Notice that the only difference between this program and the

program in Example 11-5 is in the first line of MAIN where the instruction “SETB TCON.

2″ makes INT1 an edge-triggered interrupt. When the falling edge of the signal is applied to

pin INT1, the LED will be turned on momentarily. The LED’s on-state duration depends on

the time delay inside the ISR for nSTTl. To turn on the LED again, another high-to-low

pulse must be applied to pin 3.3. This is the opposite of Example 11-5. In Example 11-5, due

to the level-triggered nature of the interrupt, as long as INT1 is kept at a low level, the LED

is kept in the on state. But in this example, to turn on the LED again, the INT1 pulse must be

brought back high and then forced low to create a falling edge to activate the interrupt.

Example 11-6

Assuming that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the

falling edge of the pulse will send a high to PI.3, which is connected to an LED (or buzzer).

In other words, the LED is turned on and off at the same rate as the pulses are applied to the

INT1 pin. This is an edge-triggered version of Example 11-5.

Sampling the edge-triggered interrupt

Before ending this section, we need to answer the question of how often the edge-triggered

interrupt is sampled. In edge-triggered interrupts, the external source must be held high for at

least one machine cycle, and then held low for at least one machine cycle to ensure that the

transition is seen by the microcontroller.

The falling edge is latched by the 8051 and is held by the TCON register. The TCON. 1 and

TCON.3 bits hold the latched falling edge of pins INTO and INT1, respectively. TCON.l and

TCON.3 are also called IEO and IE1, respectively, as shown in Figure 11-6. They function

as interrupt-in-service flags. When an interrupt-in-service flag is raised, it indicates to the

external world that the interrupt is being serviced and no new interrupt on this INTw pin will

be responded to until this service is finished. This is just like the busy signal you get if

calling a telephone number that is in use. Regarding the ITO and IT1 bits in the TCON

register, the following two points must be emphasized.

1. The first point is that when the ISRs are finished (that is, upon execution of

instruction RETI), these bits (TCON.l and TCON.3) are cleared, indicating

that the interrupt is finished and the 8051 is ready to respond to another inter

rupt on that pin. For another interrupt to be recognized, the pin must go back

to a logic high state and be brought back low to be considered an edge-trig

gered interrupt.

2. The second point is that while the interrupt service routine is being executed,

the INT« pin is ignored, no matter how many times it makes a high-to-low

transition. In reality one of the functions of the RETI instruction is to clear the

corresponding bit in the TCON register (TCON. 1 or TCON.3). This informs us

that the service routine is no longer in progress and has finished being serv

iced. For this reason, TCON. 1 and TCON.3 in the TCON register are called

interrupt-in-service flags. The interrupt-in-service flag goes high whenever a

falling edge is detected at the INT pin, and stays high during the entire execu

tion of the ISR. It is only cleared by RETI, the last instruction of the ISR.

Because of this, there is no need for an instruction such as “CLR TCON. 1″

(or “CLR TCON. 3″ for INT1) before the RETI in the ISR associated with the

hardware interrupt INTO. As we will see in the next section, this is not the case

for the serial interrupt.

Example 11-7

What is the difference between the RET and RETI instructions? Explain why we cannot use

RET instead of RETI as the last instruction of an ISR.

Solution:

Both perform the same actions of popping off the top two bytes of the stack into the program

counter, and making the 8051 return to where it left off. However, RETI also performs an

additional task of clearing the interrupt-in-service flag, indicating that the servicing of the

interrupt is over and the 8051 now can accept a new interrupt on that pin. If you use RET

instead of RETI as the last instruction of the interrupt service routine, you simply block any

new interrupt on that pin after the first interrupt, since the pin status would indicate that the

interrupt is still being serviced. In the cases of TFO, TF1, TCON.l, and TCON.3, they are

cleared by the execution of RETI.

Programming serial communication interrupts (Mode1) and timer interrupts (mode1)

1. Programming Timer Interrupts

The timer interrupts IT0 and IT1 are related to Timers 0 and 1, respectively. (Please

refer 8051 Timers for details on Timer registers and modes.) The interrupt programming for

timers involves following steps :

 1. Configure TMOD register to select timer(s) and its/their mode.

 2. Load initial values in THx and TLx for mode 0 and 1; or in THx only for mode 2.

http://www.engineersgarage.com/tutorials/timers-8051-timer-programming-tutorial

 3. Enable Timer Interrupt by configuring bits of IE register.

 4. Start timer by setting timer run bit TRx.

 5. Write subroutine for Timer Interrupt. The interrupt number is 1 for Timer0 and 3 for

Timer1. Note that it is not required to clear timer flag TFx.

 6. To stop the timer, clear TRx in the end of subroutine. Otherwise it will restart from 0000H

in case of modes 0 or 1 and from initial values in case of mode 2.

 7. If the Timer has to run again and again, it is required to reload initial values within the

routine itself (in case of mode 0 and 1). Otherwise after one cycle timer will start counting

from 0000H.

Example code

Timer interrupt to blink an LED; Time delay in mode1 using interrupt method

// Use of Timer mode0 for blinking LED using interrupt method

// XTAL frequency 11.0592MHz

#include<reg51.h>

sbit LED = P1^0; //LED connected to D0 of port 1

void timer(void) interrupt 1 //interrupt no. 1 for Timer 0

{

 led=~led; //toggle LED on interrupt

 TH0=0xFC; // initial values loaded to timer

 TL0=0x66;

}

main()

{

 TMOD = 0x01; // mode1 of Timer0

 TH0 = 0xFC; // initial values loaded to timer

 TL0 = 0x66;

 IE = 0x82; // enable interrupt

 TR0 = 1; //start timer

 while(1); // do nothing

}

2. Programming External Interrupts

The external interrupts are the interrupts received from the (external) devices interfaced with

the microcontroller. They are received at INTx pins of the controller. These can be level

triggered or edge triggered. In level triggered, interrupt is enabled for a low at INTx pin;

while in case of edge triggering, interrupt is enabled for a high to low transition at INTx pin.

The edge or level trigger is decided by the TCON register. The TCON register has following

bits:

Fig. 3: Bit Values of TCON Register of 8051 Microcontroller

Setting the IT0 and IT1 bits make the external interrupt 0 and 1 edge triggered respectively.

By default these bits are cleared and so external interrupt is level triggered.

Note : For a level trigger interrupt, the INTx pin must remain low until the start of the ISR

and should return to high before the end of ISR. If the low at INTx pin goes high before the

start of ISR, interrupt will not be generated. Also if the INTx pin remains low even after the

end of ISR, the interrupt will be generated once again. This is the reason why level trigger

interrupt (low) at INTx pin must be four machine cycles long and not greater than or smaller

than this.

Following are the steps for using external interrupt :

 1. Enable external interrupt by configuring IE register.

 2. Write routine for external interrupt. The interrupt number is 0 for EX0 and 2 for EX1

respectively.

Example code

//Level trigger external interrupt

void main()

{

 IE = 0x81;

 while(1);

}

void ISR_ex0(void) interrupt 0

{

 <body of interrupt>

}

Example code

//Edge trigger external interrupt

void main()

{

 IE = 0x84;

 IT1 = 1;

 while(1);

}

void ISR_ex1(void) interrupt 2

{

 <body of interrupt>

}

3. Programming Serial Interrupt

To use the serial interrupt the ES bit along with the EA bit is set. Whenever one byte of data

is sent or received, the serial interrupt is generated and the TI or RI flag goes high. Here, the

TI or RI flag needs to be cleared explicitly in the interrupt routine (written for the Serial

Interrupt).

The programming of the Serial Interrupt involves the following steps:

 1. Enable the Serial Interrupt (configure the IE register).

 2. Configure SCON register.

 3. Write routine or function for the Serial Interrupt. The interrupt number is 4.

 4. Clear the RI or TI flag within the routine.

Example code

Send ‘A’ from serial port with the use of interrupt

// Sending ‘A’ through serial port with interrupt

// XTAL frequency 11.0592MHz

void main()

{

 TMOD = 0x20;

 TH1 = -1;

 SCON = 0x50;

 TR1 = 1;

 IE = 0x90;

 while(1);

}

void ISR_sc(void) interrupt 4

{

 if(TI==1)

 {

 SBUF = ‘A’;

 TI = 0;

 }

 else

 RI = 0;

}

Example code

// Receive data from serial port through interrupt

// XTAL frequency 11.0592MHz

void main()

{

 TMOD = 0x20;

 TH1 = -1;

 SCON = 0x50;

 TR1 = 1;

 IE = 0x90;

 while(1);

}

void ISR_sc(void) interrupt 4

{

 unsigned char val;

 if(TI==1)

 {

 TI = 0;

 }

 else

 {

 val = SBUF;

 RI = 0;

 }

}

	Comparison Chart
	Interrupt Vector Table
	Interrupt Structure of 8051 Microcontroller
	Interrupt Enable (IE) Register
	We can alter the interrupt priority by assigning the higher priority to any one of the interrupts. This is accomplished by programming a register called IP (interrupt priority).

