
DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

1

THE CONCURRENT DEVELOPMENT MODEL

• The concurrent development model is called as concurrent model.

• The communication activity has completed in the first iteration and exits in

the awaiting changes state.

• The modeling activity completed its initial communication and then go to the

underdevelopment state.

• If the customer specifies the change in the requirement, then the modeling

activity moves from the under development state into the awaiting change

state.

• The concurrent process model activities moving from one state to another

state.

Advantages of the concurrent development model

• This model is applicable to all types of software development processes.

• It is easy for understanding and use.

• It gives immediate feedback from testing.

• It provides an accurate picture of the current state of a project.
Disadvantages of the concurrent development model

DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

2

• It needs better communication between the team members. This may not be

achieved all the time.

• It requires to remember the status of the different activities.

AGILE DEVELOPMENT

• Agile software engineering combines a philosophy and a set of development

guidelines.

• The development stress delivery over analysis and design, and active and

continuous communication between developers and customer.

AGILE PROCESS:

• Agility Principal

• Human Factors

a. Agile principles

• The highest priority of this process is to satisfy the customer.

• Acceptance of changing requirement even late in development.

• Frequently deliver a working software in small time span.

• Throughout the project business people and developers work together on daily

basis.

• Projects are created around motivated people if they are given the proper

environment and support.

• Face to face interaction is the most efficient method of moving information in

the development team.

• Primary measure of progress is a working software.

• Agile process helps in sustainable development.

• Continuous attention to technical excellence and good design increases agility.

• From self organizing teams the best architecture, design and requirements

are emerged.

• Simplicity is necessary in development.

b. HUMAN FACTORS

• Competence:- In an agile development “competence” encompasses innate

talent, specific software-related skills, and overall knowledge of the process

DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

3

that the team has chosen to apply. Skill and knowledge of process can and

should be taught to all people who serve as agile team members.

• Common focus. Although members of the agile team may perform different

tasks and bring different skills to the project, all should be focused on one

goal—to deliver a working software increment to the customer within the

time promised. To achieve this goal, the team will also focus on continual

adaptations (small and large) that will make the process fit the needs of the

team.

• Collaboration. Software engineering (regardless of process) is about

assessing, analyzing, and using information that is communicated to the

software team; creating information that will help all stakeholders understand

the work of the team; and building information (computer software and

relevant databases) that provides business value for the customer. To

accomplish these tasks, team members must collaborate—with one another

and all other stakeholders.

• Decision-making ability. Any good software team (including agile teams) must

be allowed the freedom to control its own destiny. This implies that the team

is given autonomy—decision-making authority for both technical and project

issues.

• Fuzzy problem-solving ability. Software managers must recognize that the

agile team will continually have to deal with ambiguity and will continually be

buffeted by change. In some cases, the team must accept the fact that the

problem they are solving today may not be the problem that needs to be

solved tomorrow.

• Mutual trust and respect. The agile team must become what is called “jelled”

team . A jelled team exhibits the trust and respect that are necessary to make

them “so strongly knit that the whole is greater than the sum of the parts.

• Self-organization. In the context of agile development, self-organization

implies three things:

1. The agile team organizes itself for the work to be done

2. The team organizes the process to best accommodate its local environment

3. The team organizes the work schedule to best achieve delivery of the software

increment

DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

4

EXTREME PROGRAMMING (XP)

• The Extreme Programming is commonly used agile process model.

• It uses the concept of object-oriented programming.

• A developer focuses on the framework activities like planning, design, coding

and testing. XP has a set of rules and practices.

a. XP values

Following are the values for extreme programming:

1. Communication

• Building software development process needs communication between the

developer and the customer.

• Communication is important for requirement gathering and discussing the

concept.
2) Simplicity
The simple design is easy to implement in code.

3. Feedback
Feedback guides the development process in the right direction.

4. Courage
In every development process there will always be a pressure situation. The
courage or the discipline to deal with it surely makes the task easy.

5. Respect
Agile process should inculcate the habit to respect all team members, other
stake holders and customer.

B. The XP Process

DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

5

◼ The XP process comprises four framework activities:

The most widely used agile process, originally proposed by Kent Beck in

2004. It uses an object-oriented approach.

◼ XP Planning
◼ Begins with the listening, leads to creation of “user stories” that

describes required output, features, and functionality. Customer
assigns a value(i.e., a priority) to each story.

◼ Agile team assesses each story and assigns a cost (development
weeks. If more than 3 weeks, customer asked to split into smaller
stories)

◼ Working together, stories are grouped for a deliverable increment
next release.

◼ A commitment (stories to be included, delivery date and other
project matters) is made. Three ways: 1. Either all stories will be
implemented in a few weeks, 2. high priority stories first, or 3. the
riskiest stories will be implemented first.

◼ After the first increment “project velocity”, namely number of
stories implemented during the first release is used to help define
subsequent delivery dates for other increments. Customers can
add stories, delete existing stories, change values of an existing
story, split stories as development work proceeds.

◼ XP Design (occurs both before and after coding as refactoring is
encouraged)

◼ Follows the KIS principle (keep it simple) Nothing more nothing
less than the story.

◼ Encourage the use of CRC (class-responsibility-collaborator) cards
in an object-oriented context. The only design work product of XP.
They identify and organize the classes that are relevant to the
current software increment. For difficult design problems,
suggests the creation of “spike solutions”—a design prototype for
that portion is implemented and evaluated.

◼ Encourages “refactoring”—an iterative refinement of the internal
program design. Does not alter the external behavior yet improve
the internal structure. Minimize chances of bugs. More efficient,
easy to read.

◼ XP Coding
◼ Recommends the construction of a unit test for a story before

coding commences. So implementer can focus on what must be
implemented to pass the test.

◼ Encourages “pair programming”. Two people work together at one
workstation. Real time problem solving, real time review for
quality assurance. Take slightly different roles.

◼ XP Testing
◼ All unit tests are executed daily and ideally should be automated.

Regression tests are conducted to test current and previous
components.

◼ “Acceptance tests” are defined by the customer and executed to
assess customer visible functionality

DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

6

c. Industrial XP:-

Industrial Extreme Programming(IXP) is an organic

evolution of XP. IXP incorporates new practices , they are::

· Reading assessment

· Project community

· Project chartering

· Test-driven management

· Retrospectives

· Continuous learning

· SSD:story-driven development

· DDD:domain-driven design

· Pairing

· Iterative usability

DEPARTMENT OF COMPUTER SCIENCE SE UNIT 4 GFGC,MALUR

7

d.

Reference:

Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger

Pressman

www.tutorialpoint.com

http://www.tutorialpoint.com/

