# Basic Electrical Engineering MCQs

**UNIT 1-6** 

#### Click on the Unit to Navigate

Unit 1 Electromagnetism

Unit 2 Electrostatics and AC Fundamentals

Unit 3 Single Phase AC Circuits

Unit 4 Polyphase A.C. Circuits & Single phase Transformers

Unit 5 DC Circuits

Unit 6 Work, Power, Energy and Batteries

## For Other Subjects Notes & MCQs





### UNIT I ELECTROMAGNETISM

| 1. The complete path followed by the magnetic  | 6. Lines of force is also called                  |
|------------------------------------------------|---------------------------------------------------|
| flux is called                                 | a. flux                                           |
| a. electric circuit                            | b. current                                        |
| b. magnetic circuit                            | c. resistance                                     |
| c. electromagnetism                            | d. flux density                                   |
| d. electric field                              | ans:a                                             |
| ans: b                                         |                                                   |
|                                                | 7. Lines of force passing per unit area is called |
| 2. Current carrying conductor is always        | a. magnetic field                                 |
| surrounded by                                  | b. magnetic flux                                  |
| a. magnetic field                              | c. magnetic flux density                          |
| b. electric field                              | d. magnetic field strength                        |
| c. Electricity                                 | ans:c                                             |
| d. current                                     |                                                   |
| ans: a                                         | 8. unit of flux is                                |
|                                                | a. weber                                          |
| 3. The direction of magnetic field produced by | b. wb/m²                                          |
| current carrying conductor is given by         | c. Tesla                                          |
| a. Lenz's law                                  | d. AT                                             |
| b. right hand thumb rule                       | ans:a                                             |
| c. Fleming's left hand rule                    |                                                   |
| d. Kirchoff's law                              | 9. Unit of flux density is                        |
| ans: b                                         | a. wb/m²                                          |
|                                                | b. wb                                             |
| 4. Imaginary lines of force originating from   | c. AT/wb                                          |
| magnet is called                               | d. A                                              |
| a. current                                     | ans:a                                             |
| b. resistance                                  |                                                   |
| c. flux                                        | 10. Unit of magnetic field                        |
| d. magnetic field                              | a. wb/m <sup>2</sup>                              |
| ans: c                                         | b. wb                                             |
|                                                | c. AT/wb                                          |
| 5. Region surrounded by magnet is called       | d. none of above                                  |
| a. magnetic field strength                     | ans:b                                             |
| b. magnetic field                              |                                                   |
| c. electric field                              | 11. Unit of reluctance is                         |
| d. resistance                                  | a. AT/wb                                          |
|                                                | <del>.</del>                                      |

ans: b

b. AT

c. Tesla

d. Wb/A

ans:a

- 12. Opposition to the magnetic lines of force is called
- a. Flux
- b. resistance
- c. susceptance
- d. reluctance

ans:d

- 13. Unit of magnetic field strength is
- a. AT/m
- b. AT/wb
- c.Tesla
- d. ohms

ans: a

- 14. The force on two current carrying conductors in the same direction
- a. have force of repulsion between them
- b. have force of attraction between them
- c. remains unaffected
- d. none of above

ans: b

- 15. Magneto motive force is directly proportional to
- a. no. of turns of coil
- b. current through the coil
- c. both a and b
- d. none of above

ans: c

- 16. The term permeability for a material means
- a. the no. of turns on an air core
- b. the mmf required to produce one unit of magnetic flux
- c. the ability of a material to conduct electricity through it

d. the ability of material to conduct magnetic lines of force

ans: d

- 17. An air gap is usually inserted in a magnetic circuit
- a. to prevent saturation
- b. increase flux
- c. decrease flux
- d. increase mmf

ans: a

- 18. A magnetic circuit requires 800 ampere turns to produce a certain amount of flux. If exciting coil of 100 turns has 5 ohms resistance, then the voltage to be applied to the exciting coil must be
- a. 40V
- b. 20 V
- c.10V
- d. 5V

ans: a

- 19. Permeability of a material is the ratio of
- a. magnetic field to flux density
- b. flux density to magnetic field strength
- c. magnetic field strength to flux density
- d. none of above

ans: b

- 20. The term saturation related to magnetic circuit means
- a. magnetic field strength increases with current
- b. flux density increases with current
- c. flux density remains constant if magnetic field strength is increased
- d. magnetic field strength remains constant if flux density is increased.

ans:c

- 21. The lines of force produced by coil completing their path through air, instead of intended path is called
- a. useful flux
- b. saturated flux
- c. air flux
- d. leakage flux

ans: d

- 22. The bulging of lines of force in air gap in a magnetic circuit is called
- a. leaking flux
- b. merging
- c. fringing
- d. scattering

ans: c

- 23. Relative permeability of vacuum is
- a.  $4\pi \times 10^{-7}$  H/m
- b. 1 H/m
- c.1
- d. 1/4 H/m

ans: c

- 24.MMF in magnetic circuit is analogous to
- a. electric current in electric circuit
- b. current density in conductor
- c. electromotive force
- d. resistance in electric circuit ans:c
- 25. Reluctance is analogous to
- a. emf in electric circuit
- b. resistivity
- c. conductivity
- d. resistance in electric circuit

ans: d

- 26. The magnetic reluctance of a material
- a. increases with increasing cross sectional area of material

- b. does not vary with increasing the cross sectional area
- c. decreases with increasing cross sectional area of material
- d. decreases with increasing the length of material

ans: c

- 27. The correct relation stated as following is
- a.  $\phi = \frac{N}{l/a\mu 0\mu r}$
- b. NI =  $B \times I/a \mu_0 \mu_r$
- c. N=H×/
- d. NI =  $\phi \times I/\mu_0\mu_r$  a

ans: d

- 28. The permeance in a magnetic circuit corresponds to
- a. resistance in an electric circuit
- b. emf in an electric circuit
- c. conductivity in electric circuit
- d. conductance in an electric circuit

ans: d

- 29. The ampere turns are
- a. the product of the number of turns and current of the coil
- b. the number of turns of a coil through which current is flowing
- c. the currents of all turns of the coil
- d. the turns of transformer winding ans:a

30. What will be the current flowing through the ring shaped air core when number of turns is 800 and ampere turns are 3200

- a. 0.25
- b.2.5
- c.4.0
- d. 0.4

ans:c

- 31. Leakage factor is defined as the ratio of
- a. flux in air gap by total flux
- b. Total flux by useful flux
- c. airgp flux by useful flux
- d. total flux by flux produced by solenoid

ans: b

- 32. Effect of fringing in magnetic circuit is
- a. it increases flux density
- b. its effective area of air gap decreases
- c. it decreases flux density
- d. none of above

ans:c

- 33.The force experienced by unit north pole when placed at point in a magnetic field is called
- a. magnetic field strength at that point
- b. exerted force at that point

c.flux

d. magnetic field

ans:a

- 34. The mechanical force acting on current carrying on conductor when placed in magnetic field is given by relation
- a.  $F = N d\phi/dt$
- b.  $F = Blv sin\Theta$
- c.  $F = BIL sin\Theta$
- d. F=L di/dt

ans: c

- 35. Which of the following has the highest magnetic permeability?
- a. paramagnetic substances
- b. diamagnetic substances
- c. ferromagnetic substances
- d. vacuum

ans: c

36. The perfect insulator for magnetic lines of

force is

- a. copper
- b. rubber
- c. glass
- d. none of these

ans: d

- 37. The force between two parallel current carrying conductors is given by relation
- a.  $I_1I_2 \times 2 \times 10^{-7} \times I/d$
- b.  $I_1 dI / I_2 \times 4\pi \times 10^{-7}$
- c.  $I_1I_2/2\pi \times 10^{-7}$
- d.  $I_1^2 \times 4 \times 10^{-7} Id$

ans: a

- 39. The magnitude of force experienced by current carrying conductor placed in magnetic field depends on
- a. value of flux
- b. magnitude of current flowing through conductor
- c. direction of current
- d. all of above

ans: d

- 40.Two current carrying conductor lying parallel and close to each other. They are carrying current in the opposite direction. The force between them is
- a. repulsive
- b. Attractive
- c. Zero
- d. none of these

ans: a

- 41. Two current carrying conductor lying parallel and close to each other. They are carrying current in the same direction. The force between them is
- a. repulsive
- b. Attractive
- c. Zero
- d. none of these

ans: b

42. Two current carrying conductor lying parallel and close to each other are exerting force of attraction on each other. The currents are

a. very high

b. in opposite direction

c. low

d. in the same direction

ans: d

43. Two current carrying conductor lying parallel and close to each other are exerting force of repulsion on each other. The currents are

a. very high2

b. in opposite direction

c. low

d. in the same direction

ans: b

44. Two conductors are carrying 1000A and 5000A currents respectively are 5cm apart. The force per meter length between two conductors

a. 100 N/m

is

b. 40 N/m

c.30 N/m

d. 20 N/m

ans: d

45. Magnetic field strength due to N long straight current carrying conductors in the same direction is given by

a. H= NI/ $4\pi d$ 

b. H= I/ $2\pi d$ 

c. H= NI/  $2\pi d$ 

d. H=NI/I

ans: c

46. A conductor of 10cm length carrying a current of 5A placed in uniform magnetic field

of flux density 1.25T at 30° to the lines of flux. Force acting on conductor will be

a.0.3125N

b. 3.125N

c.1.325N

d. 5.321N

ans: a

47. Fleming's left hand rule is used to find

a. Magnitude of induced emf in conductor

b. Direction of magnetic field in conductor

c. Direction of force on current carrying conductor

d. Magnitude of flux density

ans: c

- 48. Which statement is correct related to magnetic field produced due to current carrying conductor
- a. direction of rotation of screw to advance in the direction of current gives the direction of magnetic field
- b. If right hand curled fingers shows the direction of current, thumb gives the direction of magnetic field

c. if direction of rotation of screw shows current ,tip gives the direction of magnetic field

d. all of these

ans: a

- 49. Force experienced by current carrying conductor when placed in magnetic field will be zero when
- a. current in the conductor is maximum

b. Angle between conductor and field is zero

c. Both a &b

d. None of these

ans: b

50. Relative permeability is defined as the ratio of

- a. magnetic field strength in a medium to flux density in the same medium
- b. Magnetic flux density in vacuum to magnetic field strength in vacuum
- c. Magnetic flux density in other medium to flux density in vacuum
- d. Magnetic flux density in vacuum to flux density in other medium

ans: c

- 51. The ability with which the magnetic material allows the flux to pass through a given medium is called
- a. susceptibility
- b. permeability
- c. conductivity
- d. reluctivity

ans: b

- 52. Unit of permeability is
- a. A/m
- b. H/m
- c. I/m
- d. m/H

ans: b

- 53. Permeability of free space or vacuum is defined as the ratio of
- a. magnetic flux density in vacuum to magnetic field strength
- b. Magnetic flux density in other medium to magnetic field strength
- c. Magnetic field strength to magnetic flux density in vacuum
- d. Magnetic field strength in medium to flux density in other medium

ans: a

- 54. Right hand thumb rule is used to find out
- a. direction of induced emf
- b. direction of magnetic field due to current carrying conductor

- c. magnitude of force experienced
- d. direction of force

ans: a

- 55. In left hand rule, thumb always represents
- a. current
- b. voltage
- c. magnetic field
- d. direction of force on conductor

ans: d

- 56. The force between two long current carrying conductor is inversely proportional to
- a. current in one conductor
- b. product of current in two conductors
- c. distance between the two conductors.
- d. radius of conductors

ans: c

- 57. While comparing magnetic and electric circuit, the point of dissimilarity exists while considering
- a.mmf and emf
- b. Reluctance and resistance
- c. flux and current
- d. permeance and conductance

ans: c

59. Permeance is to reluctance as conductance

is to

- a. inductance
- b. resistance
- c. capacitance
- d. ampere turns

- 60. A straight cylindrical solenoid has a flux of 12mwb and a flux density of 0.9T. The diameter of solenoid must be
- a.130cm
- b. 13cm
- c.10cm

| ans : b  a.5000AT  b. 7200AT  61. 1 tesla is given as  c.750AT  a. 1wb/m²  d. 7500AT  b. 1wb/cm²  c.1mwb/cm²  d. 1wb/mm²  d. 1wb/mm²  d. 1wb/mm²  fee. The reluctance of ring is  ans: a  a.7×10 <sup>7</sup> AT/Wb  b. 0.7×10 <sup>6</sup> AT/Wb  62. Which part of the magnetic path requires  c.6×10 <sup>7</sup> AT/Wb  d. 6×10 <sup>5</sup> AT/Wb  a.coil  ans: b  b.core  c.airgap  d. inductance  a.10.7 Wb  ans: c  b.70 mWb                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c.750AT  a. 1wb/m²  b. 1wb/cm²  c.1mwb/cm²  d. 7500AT  ans:d  c.1mwb/cm²  d. 1wb/mm²  d. 1wb/mm²  d. 1wb/mm²  for the reluctance of ring is  ans: a  a.7×10² AT/Wb  b. 0.7×10 <sup>6</sup> AT/Wb  62. Which part of the magnetic path requires  c.6×10³ AT/Wb  a.coil  ans: b  b.core  c.airgap  d. inductance  c.750AT  d. 7500AT  d. 7500AT  d. 7500AT  ans: d  67.The value of flux is  a.10.7 Wb                                                                          |
| a. 1wb/m² b. 1wb/cm² c.1mwb/cm² d. 1wb/mm² d. 1wb/mm² d. 1wb/mm² defect reluctance of ring is ans: a a.7×10 <sup>7</sup> AT/Wb b. 0.7×10 <sup>6</sup> AT/Wb 62. Which part of the magnetic path requires c.6×10 <sup>7</sup> AT/Wb largest mmf d. 6×10 <sup>5</sup> AT/Wb a.coil ans: b b.core c.airgap d. inductance d. 7500AT d. 7500AT ans: d 66. The reluctance of ring is a.7×10 <sup>7</sup> AT/Wb b. 0.7×10 <sup>6</sup> AT/Wb c.6×10 <sup>5</sup> AT/Wb a.coil ans: b |
| b. 1wb/cm² c.1mwb/cm² d. 1wb/mm² 66. The reluctance of ring is ans: a a.7×10 <sup>7</sup> AT/Wb b. 0.7×10 <sup>6</sup> AT/Wb 62. Which part of the magnetic path requires c.6×10 <sup>7</sup> AT/Wb largest mmf d. 6×10 <sup>5</sup> AT/Wb a.coil b.core c.airgap 67.The value of flux is d. inductance a.10.7 Wb                                                                                                                                                             |
| c.1mwb/cm² d. 1wb/mm² 66. The reluctance of ring is ans: a a.7×10 <sup>7</sup> AT/Wb b. 0.7×10 <sup>6</sup> AT/Wb 62. Which part of the magnetic path requires c.6×10 <sup>7</sup> AT/Wb largest mmf d. 6×10 <sup>5</sup> AT/Wb a.coil ans: b b.core c.airgap 67.The value of flux is d. inductance a.10.7 Wb                                                                                                                                                                 |
| d. 1wb/mm²  ans: a  ans: a  a.7×10 <sup>7</sup> AT/Wb  b. 0.7×10 <sup>6</sup> AT/Wb  62. Which part of the magnetic path requires  c.6×10 <sup>7</sup> AT/Wb  largest mmf  d. 6×10 <sup>5</sup> AT/Wb  a.coil  ans: b  b.core  c.airgap  d. inductance  66. The reluctance of ring is  a.7×10 <sup>7</sup> AT/Wb  b. 0.7×10 <sup>6</sup> AT/Wb  c.6×10 <sup>5</sup> AT/Wb  ans: b  67. The value of flux is  a.10.7 Wb                                                        |
| ans: a  a.7×10 <sup>7</sup> AT/Wb  b. 0.7×10 <sup>6</sup> AT/Wb  62. Which part of the magnetic path requires  c.6×10 <sup>7</sup> AT/Wb  largest mmf  d. 6×10 <sup>5</sup> AT/Wb  a.coil  ans: b  b.core  c.airgap  67.The value of flux is  a.10.7 Wb                                                                                                                                                                                                                       |
| b. 0.7×10 <sup>6</sup> AT/Wb  62. Which part of the magnetic path requires  c.6×10 <sup>7</sup> AT/Wb  d. 6×10 <sup>5</sup> AT/Wb  a.coil  ans: b  b.core  c.airgap  d. inductance  b. 0.7×10 <sup>6</sup> AT/Wb  a.6×10 <sup>7</sup> AT/Wb  ans: b  ans: b                                                                                                                                                                                                                   |
| 62. Which part of the magnetic path requires  c.6×10 <sup>7</sup> AT/Wb  d. 6×10 <sup>5</sup> AT/Wb  a.coil  b.core  c.airgap  d. inductance  c.6×10 <sup>7</sup> AT/Wb  a. 6×10 <sup>5</sup> AT/Wb  a. 10.7 Wb                                                                                                                                                                                                                                                               |
| largest mmf  a.coil  b.core  c.airgap  d. 6×10 <sup>5</sup> AT/Wb  ans: b  67.The value of flux is  a.10.7 Wb                                                                                                                                                                                                                                                                                                                                                                 |
| a.coil ans: b b.core c.airgap 67.The value of flux is d. inductance a.10.7 Wb                                                                                                                                                                                                                                                                                                                                                                                                 |
| b.core c.airgap 67.The value of flux is d. inductance a.10.7 Wb                                                                                                                                                                                                                                                                                                                                                                                                               |
| c.airgap 67.The value of flux is d. inductance a.10.7 Wb                                                                                                                                                                                                                                                                                                                                                                                                                      |
| d. inductance a.10.7 Wb                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ans: c b.70 mWb                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c.10.7mWb                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63. Soft steel and iron alloy allow easy passage d. 107 mwb                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of a magnetic flux because ans: c                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a. of its high elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| b. of its high permeability 68. The relative permeability of air                                                                                                                                                                                                                                                                                                                                                                                                              |
| c. of its high conductivity is                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d. of its high reluctance a. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ans: b b. less than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| c. greater than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 64. Magnitude of the magnetic field produced d. 1000                                                                                                                                                                                                                                                                                                                                                                                                                          |
| by a coil is proportional to ans: a                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a. Permeability of the core material                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b. the no. of turns of coil 69. Relative permeability of all non magnetic                                                                                                                                                                                                                                                                                                                                                                                                     |
| c. the magnitude of current flow through the materials is                                                                                                                                                                                                                                                                                                                                                                                                                     |
| coil a. 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| d. the product of all above b. 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ans:d c.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Following data should be used for solving 65 to ans: c 67                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A coil is wound uniformly with 300 turns over 70. Which of the following is non magnetic                                                                                                                                                                                                                                                                                                                                                                                      |
| steel ring of relative permeability 900, having material?                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mean circumference of 40mm and cross a. iron                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sectional area of 50mm <sup>2</sup> . A current of 25A is b. Mild steel                                                                                                                                                                                                                                                                                                                                                                                                       |
| passed through coil c. brass                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

d. Silicon steel

ans: c

- 71. Which of the following is magnetic material?
- a. copper
- b. silicon steel
- c. aluminium
- d. brass

ans: b

- 72. Flux in the air gap is called
- a. leakage flux
- b. total flux
- c. useful flux
- d. all of above

ans: c

- 73. A magnetic circuit has a mmf of 400AT and a reluctance of  $2 \times 10^5$  AT/wb. The magnetic flux in the magnetic circuit is
- a.  $3 \times 10^{-5}$ Wb
- $b.2 \times 10^{-3}Wb$
- $c.1.5 \times 10^{-2}Wb$
- d.  $2.5 \times 10^{-4}$ Wb

ans: b

- 74. A 2cm long coil has 10 turns and carries a current of 750mA. The magnetizing force of the coil is
- a. 225 AT/m
- b. 675 AT/m
- c.450 AT/m
- d. 375 AT/m

ans: d

- 75. The reluctance of a magnetic circuit varies with
- a. length × area
- b. length / area
- c. area/length
- d. (length)<sup>2</sup> + area

ans: b

- 76. A strength of an electromagnet is determined by
- a. reluctance
- b. permeability of the core
- c.mmf
- d. all of above

ans: d

- 77. The strength of the magnetic field around a conductor is directly proportional to
- a. voltage across the conductor
- b. current in the conductor
- c. type of material of conductor
- d. none of above

ans: b

- 78. Reluctance of magnetic material is
- a. less than non magnetic material
- b. more than non magnetic material
- c. equal to that of non magnetic material
- d. none of above

ans: a

- 79. The denser the flux
- a. stronger is the magnetic field
- b. weaker is the magnetic flux
- c. no effect on the strength of field
- d. none of above

ans: a

- 80. The direction of induced e.m.f. is given by
- a. Flemings right hand rule
- b. Flemings left hand rule
- c. faradays law of electromagnetic induction
- d. crock screw rule.

ans:a

- 81. Magnitude of induced e.m.f. in a generator
- depend on
- a. flux density
- b. magnitude of current

d. The induced current is the same in all c. rate of cutting flux d. Rate of current discharge. positions ans:b ans:c 86. In which of the following situations a 82. According to Lenz's law direction of induced e.m.f. is. voltage is induced in a conductor? a. Same as cause produced a. The conductor moves through the air. b. Perpendicular to cause produced b. The conductor is connected to a battery. c. opposite to cause produced c. The conductor is connected to a motor. d. Non above d. The conductor is moved in a magnetic field. ans:d ans:c 83. According to Faraday's Laws of 89. In case of dynamically induced emf, electromagnetic induction, an e.m.f.is induced direction of induced emf is given by in a conductor whenever it a. Fleming's right hand rule a. Lies in magnetic field b. Lenz's law b. Cuts magnetic flux c. Faraday's first law c. moves parallel to the direction of the d. Faraday's second law magnetic field ans:a d. lies perpendicular to the magnetic flux. 90. Emf induced in a coil due to its own current ans:b is called Induction. 84. When a magnet moves past an object, it will a. Mutual produce eddy currents in the object if the b.Self object is c. Dynamic a. a solid d. Static b. an insulator ans:b c. a conductor d. made from the magnetic material 91. Emf induced in a coil due to current change ans:d in neighboring coil is called\_\_\_\_\_ induction. 85. Electricity can be generated by rotating a a. Mutual wire loop between the poles of a magnet. In b. Self which of the following positions would induce c. Dynamic the greatest current in the loop? d. Static a. The plane of the loop is parallel to the ans:a magnetic field. b. The plane of the loop is perpendicular to the 92. Co-efficient of self induction is also called magnetic field. c. The plane of the loop makes an angle of 45° a. self- induction with the magnetic field. b. Inductance

c. Self- inductance

| d. Induction                                      | c. Henry                                                     |
|---------------------------------------------------|--------------------------------------------------------------|
| ans:a                                             | d. Linkages                                                  |
|                                                   | ans:c                                                        |
| 93. The property of a coil due to which it        |                                                              |
| opposes the change of current flowing through     | 98. Unit of induced emf is                                   |
| itself is called of the coil.                     | a. Volt                                                      |
| a. Static inductance                              | b. Ampere                                                    |
| b. Dynamic inductance                             | c. Henry                                                     |
| c.Self inductance                                 | d. Linkages                                                  |
| d. Mutual inductance                              | ans:a                                                        |
| ans:c                                             |                                                              |
|                                                   | 99. The property of one coil due to which it                 |
| 94is used to sense the flow of                    | opposes the change in the other coil is                      |
| current in a electric circuit.                    | called between two coils.                                    |
| a. Ammeter                                        | a. Dynamic inductance                                        |
| b. Voltmeter                                      | b. Static inductance                                         |
| c. Wattmeter                                      | c. Self inductance                                           |
| d. Galvanometer                                   | d. Mutual inductance                                         |
| ans:a                                             | ans:d                                                        |
| 95. The phenomenon of the self induction is felt  | 100. The unit of mutual inductance                           |
| only when the current in the coil is              | is                                                           |
| a. Changing                                       | a. Volt                                                      |
| b. Increasing                                     | b. Ampere/ Volt                                              |
| c. Decreasing                                     | c. Henry                                                     |
| d. All the above                                  | d. Linkages                                                  |
|                                                   | _                                                            |
| ans:a                                             | ans:c                                                        |
| 96. The negative sign in the induced emf of self  | 101. In the expression $e = \frac{Mdi_1}{dt}$ , M represents |
| induction indicates that energy is being          | a. Mutual induction                                          |
| absorbed from the electric circuit and stored as  | b. Mutual inductance                                         |
| energy in the coil.                               | c. Number of lines of force                                  |
| a. mechanical                                     | d. None of these                                             |
| b. Electronic                                     | ans:b                                                        |
| c. electric                                       |                                                              |
| d. Magnetic                                       | 102. If 0.75 V is induced emf and resistance                 |
| ans:d                                             | offered by the coil is 200 ohm then induced                  |
|                                                   | current is                                                   |
| 97. Unit of co-efficient of self induction of the | a. 3.75 A                                                    |
| circuit is                                        | b. 3. 75 mA                                                  |
| a. Volt                                           | c. 3.75µA                                                    |
| b. Ampere                                         | σ. σ., σμι                                                   |

| d. 37.5 mA                                        | a. MMF                                                    |
|---------------------------------------------------|-----------------------------------------------------------|
| ans:b                                             | b. EMF                                                    |
|                                                   | c. Flux linkage                                           |
| 103. If magnetic flux changes from 0.8 Wb to      | d. Magnetic intensity                                     |
| 0.3 Wb, then change in flux is Wb.                | ans:a                                                     |
| a. 1.1                                            |                                                           |
| b. 0.5                                            | 109. Expression NI/L is called                            |
| c0.5                                              | a. MMF                                                    |
| d1.1                                              | b. EMF                                                    |
| ans:c                                             | c. Flux linkage                                           |
|                                                   | d. Magnetic field strength                                |
| 104. If Number of turns of coil is 200 and if the | ans:d                                                     |
| current is 100mA, then MMF is                     |                                                           |
| a. 2000 AT                                        | 110. Expression for mutual inductance is                  |
| b. 200 AT                                         | a. –L dI/dt                                               |
| c. 20 AT                                          | b. MdI / dt                                               |
| d. 0.5 AT                                         | c. $N_2 \Phi_2 / I_1$                                     |
| ans:c                                             | d. NΦ/I                                                   |
|                                                   | ans:c                                                     |
| 105. Leakage factor is also called as             |                                                           |
| a. Fringing                                       | 111. Faraday's law of electromagnetic induction           |
| b. Coefficient of inductance                      | is e=                                                     |
| c. Magnetic coefficient                           | a. –NdΦ/dt                                                |
| d. Hopkinson's coefficient                        | b. MdI / dt                                               |
| ans:d                                             | c. $N_2 \Phi_2 / I_1$                                     |
|                                                   | d. NΦ/I                                                   |
| 106. Movement of electrons are called as          | ans:a                                                     |
| a. MMF                                            |                                                           |
| b. Current                                        | 112. The constant K in case of mutual induction           |
| c. Voltage                                        | is equal to                                               |
| d. Flux                                           | $a.\Phi_1/\Phi_2$                                         |
| ans:b                                             | $b.\Phi_2/\Phi_1$                                         |
|                                                   | $c.\Phi_1/I_1$                                            |
| 107. Flux density is equal to of flux             | $d.\Phi_2/I_1$                                            |
| and area of cross – section.                      | ans:d                                                     |
| a. Sum                                            |                                                           |
| b. Difference                                     | 113. Product of the permeability $\mu_o\mu_r$ is equal to |
| c. Product                                        | a. Magnetic flux                                          |
| d. Fraction                                       | b. Magnetic field                                         |
| ans:d                                             | c. Magnetic intensity                                     |
|                                                   | d. Magnetic flux density / magnetic field                 |
| 108. NI expression is called                      | strength                                                  |
|                                                   |                                                           |

| ans:d                                                  | 119. Two current carrying conductors lying parallel to each other are exerting a force of |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 114. Expression for self induced emf is                | attraction on each other. The currents are                                                |
| a. –L dI/dt                                            | a. Very high                                                                              |
| b. MdI1 / dt                                           | b. in opposite direction                                                                  |
| c. N2 Φ2/ I1                                           | c. low                                                                                    |
| d. NΦ/I                                                | d. in the same direction                                                                  |
| ans:d                                                  | ans:d                                                                                     |
| 115is normally termed as flux                          | 120. Two conductors are lying parallel and close                                          |
| linkages.                                              | to each other. They are carrying currents in                                              |
| а. Ф                                                   | opposite directions. The force between them is.                                           |
| b. dΦ/dt                                               | a. Repulsive                                                                              |
| c. NΦ                                                  | b. attractive                                                                             |
| d.Φ/I                                                  | c. zero                                                                                   |
| ans:c                                                  | d. none of these                                                                          |
|                                                        | ans:a                                                                                     |
| 116. The term NΦ/I is generally called as              |                                                                                           |
| a. Self inductance                                     | 121. When a coil consisting of single turn                                                |
| b. Mutual inductance                                   | rotates at uniform speed in magnetic field, the                                           |
| c. Flux linkage                                        | induced emf is                                                                            |
| d. Induced emf                                         | a. steady                                                                                 |
| ans:a                                                  | b. alternating                                                                            |
|                                                        | c. changing                                                                               |
| 117. In the expression for reluctance $S = I/\mu A$ of | d. reversing                                                                              |
| a conduced, letter A represents of                     | ans:b                                                                                     |
| the conductor.                                         |                                                                                           |
| a. Total area                                          | 122. The emf induced in a conductor of length 1                                           |
| b. Surface area                                        | meter moving at a right angles to a uniform                                               |
| c. Cross- sectional area                               | magnetic field of flux density 1.5 wb/m² with                                             |
| d. None of these.                                      | velocity of 50 m/s is.                                                                    |
| ans:c                                                  | a. 0                                                                                      |
|                                                        | b.1.5 v                                                                                   |
| 118. When a current carrying conductor is              | c. 75 v                                                                                   |
| brought in to magnetic field, the force that           | d. 100 v                                                                                  |
| moves the conductor depends on                         | ans:c                                                                                     |
| a. direction of current.                               |                                                                                           |
| b. length of conductor                                 | 123. Which of following statements is incorrect.                                          |
| c. value of current                                    | a. Whenever flux linking with the coil or circuit                                         |
| d.all of the above                                     | changes, an emf is induced.                                                               |
| ans:d                                                  | b. The direction of dynamically induced emf can                                           |
|                                                        | be determined by Fleming's right-hand rule.                                               |

- c. the coefficient of self-inductance is proportional to the square of number of turns on it.
- d. Coefficient of coupling for tightly coupled coil is zero.

ans: d

## Unit II Part (a) ELECTROSTATICS

| 1. A dielectric material must be                 | c. smaller than the capacitance of smallest                |
|--------------------------------------------------|------------------------------------------------------------|
| a. resistor                                      | capacitor                                                  |
| b. Insulator                                     | d. average of the capacitance of all capacitor             |
| c. Conductor                                     | ans:c                                                      |
| d. Semiconductor                                 |                                                            |
| ans:b                                            | 6.The total capacitance of five capacitor each of          |
|                                                  | 10 μF in series is                                         |
| 2. The energy stored in capacitance is given     | a.10 μF                                                    |
| by                                               | b.2 μF                                                     |
| a. C <sup>2</sup> V                              | c.25 μF                                                    |
| b. CV <sup>2</sup> /2                            | d. none of these                                           |
| c. C <sup>2</sup> V/2                            | ans:b                                                      |
| d. CV                                            |                                                            |
| ans:b                                            | 7. Two capacitors of capacitance $C_1$ =0.1 $\mu F$ and    |
|                                                  | C <sub>2</sub> =0.2 μF are connected in series across 300V |
| 3. Electrolytic capacitors can be used           | source. The voltages across C1 will be                     |
| for                                              | a. 100 V                                                   |
| a. a.c. only                                     | b. 200 V                                                   |
| b. d.c. only                                     | c. 150 V                                                   |
| c. both a.c. and d.c.                            | d. 300 V                                                   |
| d. 50 Hz a.c.                                    | ans:b                                                      |
| ans:b                                            |                                                            |
|                                                  | 8. A capacitor stores 0.4C charge at 2 V. Its              |
| 4. If two 10 μF capacitors are connected in      | capacitance is                                             |
| parallel, then the effective capacitance will    | a. 0.4 F                                                   |
| be                                               | b. 0.2 F                                                   |
| a.2.5 μF                                         | c. 3.2 F                                                   |
| b.40 μF                                          | d. 0.8 F                                                   |
| c.0.4 µF                                         | ans:b                                                      |
| d.20 μF                                          |                                                            |
| ans:d                                            | 9. A20mF capacitor is in series with a 150 ohm             |
| 5. If a number of capacitors are connected in    | resistor. The combination is placed across a 40V           |
| series then the total capacitance of combination | dc source. Time constant of the circuit                    |
| is                                               | is                                                         |
| a. greater than the capacitance of largest       | a. 8 s                                                     |
| capacitor                                        | b. 3 s                                                     |
| b. greater than the capacitance of any capacitor | c. 6 s                                                     |
|                                                  |                                                            |

| d. 2.4s                                             | ans: a                                          |
|-----------------------------------------------------|-------------------------------------------------|
| ans: b                                              |                                                 |
|                                                     | 15. The unit of capacitance is                  |
| 10. Three capacitors of values 3 μF, 6 μF, and 12   | a. Volts/Coulomb                                |
| μF are connected in parallel across an a.c.         | b. Coulomb/Volt                                 |
| source. The maximum current pass through            | c. Ohms                                         |
|                                                     | d. Henry/Wb                                     |
| a.3 µF                                              | ans: b                                          |
| b.6 μF                                              |                                                 |
| c.12 μF                                             | 16. There is repulsive force between two        |
| d. all the capacitors                               | charged objects when                            |
| ans:c                                               | a. Charges of unlike sign                       |
|                                                     | b. they have the same number of protons         |
| 11.As per Coulomb's law                             | c. charges are of same sign                     |
| a. F= $Q_1Q_2/\epsilon_0\epsilon_rd^2$              | d. they have the same number of protons         |
| b. $F = Q_1Q_2 / 4\pi d^2$                          | ans: c                                          |
| c. F= $Q_1Q_2/4\pi \epsilon_0\epsilon_r d^2$        |                                                 |
| d. $F = Q_1Q_2/4\pi \epsilon_0\epsilon_r d$         | 17. The capacitance of a capacitor is not       |
| ans: c                                              | affected by                                     |
|                                                     | a. distance between plates                      |
| 12. Electric field intensity at any point in an     | b. area of plates                               |
| electric field is equal to                          | c. thickness of plates                          |
| a. potential gradient                               | d. all of the above                             |
| b. (potential gradient) <sup>2</sup>                | ans: c                                          |
| c. (potential gradient) <sup>1/2</sup>              |                                                 |
| d. (potential gradient) <sup>1/3</sup>              | 18. When there is an equal amount of positive   |
| ans: a                                              | and negative charges on an object the object is |
|                                                     | a. Positively charged                           |
| 13. The lines of forces due to isolated charged     | b. negatively charged                           |
| particle are                                        | c. neutral                                      |
| a. always straight                                  | d. supercharged                                 |
| b. always curved                                    | ans:c                                           |
| c. sometimes curved                                 |                                                 |
| d. none of the above                                | 19. Which of the following statements is        |
| ans: a                                              | correct?                                        |
|                                                     | a. Air capacitors have a black band to indicate |
| 14. The direction of electric field due to positive | the outside foil                                |
| charge is                                           | b. Electrolytic capacitor must be connected in  |
| a. away from the charge                             | the correct polarity                            |
| b. towards the charge                               | c. Ceramic capacitors must be connected in the  |
| c. both (a) and (b)                                 | correct polarity                                |
| d. none of the above                                |                                                 |

d. Mica capacitors are available in capacitance value of 1 to 10  $\mu\text{F}$ 

ans: b

- 20. Three capacitors each of the capacity C are given. The resultant capacity 2/3 C can be obtained by using them
- a. all in series
- b. all in parallel
- c. two in parallel and third in series with this combination
- d. two in series and third in parallel across this combination.

ans:c

- 21. For which of the following parameter variation, the capacitance of the capacitor remains unaffected?
- a. Distance between plates
- b. Area of the plates
- c. Nature of dielectric
- d. Thickness of the plates

ans: d

- 22. Which of the following expression is correct for electric field strength?
- a. E = D/ $\epsilon$
- b. E =  $D^2/\epsilon$
- c.  $E = \pi D$
- d. E =  $\pi D^2$

ans: a

- 23. Which of the following statement is true?
- a. The current in the discharging capacitor grows linearly
- b. The current in the discharging capacitor grows exponentially
- c. The current in the discharging capacitor decays exponentially
- d. The current in the discharging capacitor decreases constantly

ans:c

- 24. In a capacitor the electric charge is deposited on
- a. metal plates
- b. dielectric
- c. both (a) and (b)
- d. none of the above

ans:a

- 25. Which of the following materials has the highest value of dielectric constant?
- a. Glass
- b. Vaccum
- c. Ceramics
- d. Oil

ans: c

- 26. Capacitance of air capacitor increases with
- a. increase in plate area and decrease in distance between the plates
- b. increase in plate area and distance between the plates
- c. decrease in plate area and value of applied voltage
- d. reduction in plate area and distance between the plates

ans: a

- 27. A capacitor consists of
- a. two insulators separated by a conductor
- b. two conductor separated by a dielectric
- c. two insulators only
- d. two conductors only

ans:b

- 28. A paper capacitor is usually available in the form of
- a. tubes
- b. rolled foil
- c. disc
- d. meshed plates

- 29. Air capacitors are generally available in the range
- a. 10 to 400 pF
- b. 1 to 20 pF
- c. 100 to 900 pF
- d. 20 to 100 pF

ans:a

- 30. The unit of capacitance is
- a. Henry
- b. Ohm
- c. Farad
- d. Farad/m

ans:c

- 31. A capacitor charged to 200V has 2000  $\mu\text{C}$  of charge. The value of capacitance will be
- a. 10 F
- b. 10 μF
- c. 100 µF
- $d. 1000 \mu F$

ans:b

- 32. Voltage across capacitor at any time't' during charging from a D.C. source of voltage V is given by
- a.  $v = Ve^{-t/\lambda}$
- b.  $v = V(1-e^{-t/\lambda})$
- c.  $v = V^2 e^{-t/\lambda}$
- d.  $v = V^2(1-e^{-t/\lambda})$

ans:b

- 33. The ratio of electric flux density to electric field intensity is called ....... of the medium
- a. permeability
- b. permittivity
- c. reluctance
- d. capacitance

ans:b

- 34. Energy stored in the electrical field of a capacitor C when charged from a D.C, source of voltage V is equal to ....... Joule
- a. ½ CV<sup>2</sup>
- b. ½ C2V
- c. CV<sup>2</sup>
- d. C<sup>2</sup>V

ans:a

- 35. The absolute permittivity of free space is given by
- a. 8.854 x 10<sup>-9</sup> F/m
- b. 8.854 x 10<sup>-10</sup> F/m
- c. 8.854 x 10<sup>-11</sup> F/m
- d. 8.854 x 10<sup>-12</sup> F/m

ans:d

- 36. The relative permittivity of free space is given by
- a. 1
- b. 10
- c. 100
- d. 1000

ans:a

- 37. When 4 Volt e.m.f. is applied across a 1 Farad capacitor, it will store energy of
- a. 2 Joule
- b. 4 Joule
- c. 6 Joule
- d. 8 Joule

ans:d

- 38. The capacitor preferred for high frequency circuits is
- a. air capacitor
- b. mica capacitor
- c. electrolytic capacitor
- d. paper capacitor

| 39. If a 6μF capacitor is charged to 200 V the charge in Coulomb will be | ans: a                                             |
|--------------------------------------------------------------------------|----------------------------------------------------|
| a. 800 μC                                                                | 44. Permittivity is expressed in                   |
| b. 900 μC                                                                | a. Farad/sq-m                                      |
| c. 1200 µC                                                               | b. weber/metre                                     |
| d. 1600 μC                                                               | c. Farad/meter                                     |
| ans:c                                                                    | d. weber/ square metre                             |
| 4.15.15                                                                  | ans:c                                              |
| 40. Which of the following capacitors is marked                          | ansie                                              |
| for polarity?                                                            | 45. Dielectric strength of a material depends      |
| a. air                                                                   | on                                                 |
| b. paper                                                                 | a. moisture content                                |
| c. mica                                                                  | b. temperature                                     |
| d. electrolyte                                                           | c. thickness                                       |
| ans: d                                                                   | d. all of the above                                |
|                                                                          | ans: d                                             |
| 41. Which of the following capacitor are usually                         |                                                    |
| used for radio frequency tuning                                          | 46. 1 Volt /metre is same as                       |
| a. air                                                                   | a. 1 metre/coulomb                                 |
| b. paper                                                                 | b. 1 Newton metre                                  |
| c. mica                                                                  | c. 1 Newton /Coulomb                               |
| d. electrolyte                                                           | d. 1 Joule /Coulomb                                |
| ans: b                                                                   | ans: c                                             |
| 42. The time constant of an R-C circuit is                               | 47. The relative permittivity of air is            |
| defined as the time during which capacitor                               | a.0                                                |
| charging voltage actually rises to                                       | b.1.0006                                           |
| percent of its value                                                     | c. $8.854 \times 10^{-12}$                         |
| a.37, initial                                                            | d. none of the above                               |
| b.63.2, initial                                                          | ans:b                                              |
| c.63.2, final                                                            |                                                    |
| d.37, final                                                              | 48. The relative permittivity of a material is 10. |
| ans: c                                                                   | Its absolute permittivity will be                  |
|                                                                          | a. $8.854 \times 10^{-11} F/M$                     |
| 43. The time constant of an R-C circuit is                               | b. 9 $\times 10^8 F/M$                             |
| defined as the time during which capacitor                               | c. $5 \times 10^{-5} F/M$                          |
| charging current actually falls to                                       | d. $9 \times 10^5 F/M$                             |
| percent of its initial maximum value                                     | ans: a                                             |
| a.37                                                                     |                                                    |
| b.63                                                                     | 49. The capacitance of a capacitor is              |
| c.42                                                                     | relative permittivity                              |
| d.73                                                                     |                                                    |

- a. directly proportional to
- b. inversely proportional to
- c. independent of
- d. directly proportional to square of

ans: a

- 50. An air capacitor has the same dimensions that of a mica capacitor. If the capacitance of mica capacitor is 6 times that of air capacitor, then relative permittivity of mica is
- a. 36
- b. 12
- c. 3
- d. 6

ans: d

- 51. The most convenient way of achieving large capacitance is by using
- a. multiplate construction
- b. decreased distance between plates
- c. air as dielectric
- d. dielectric of low permittivity

ans: a

- 52. Two capacitors of capacitance  $C_1$  and  $C_2$  are connected in parallel. A charge Q given to them is shared. The ratio of charges  $Q_1/Q_2$  is
- a.  $C_2/C_1$
- b. C<sub>1</sub>/ C<sub>2</sub>
- $c. C_1 C_2$
- d.  $1/C_1C_2$

ans: b

- 53. Two capacitors have capacitance 25  $\mu F$  when in parallel and 6  $\mu F$  when in series. Their individual capacitances are
- a. 12 μF and 13 μF
- b. 15  $\mu$ F and 10  $\mu$ F
- c. 10  $\mu$ F and 8  $\mu$ F
- d. none of the above

ans:b

- 54. If the dielectric of a capacitor is replaced by a conducting material the
- a. capacitor will get heated up owing to eddy currents
- b. plates will get short-circuited
- c. capacitor can store infinite charge
- d. capacitance will become very high

ans:b

- 55. The total capacitance of two condensers is  $.03\mu F$  when joined in series and  $0.16\mu F$  when connected in parallel. The products of two capacitance will be
- a.5.33
- b.2
- c.3
- d.0.48

ans:d

- 56. Joule / Coulomb is the unit of
- a. Electric field potential
- b. Potential
- c. charge
- d. none of the above.

ans:b

- 57 .A  $10\mu F$  capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the time constant of the circuit
- a. 10 sec.
- b. 0.1 sec
- c. 10mSec
- d. 100 Sec

ans:a

- 58. A  $10\mu F$  capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the initial value of charging current.
- a. 1mA
- b. 0.1 mA
- c. 0.01mA
- d. 1.00A

- $59.~A~10\mu F$  capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the initial rate of rise of voltage across the capacitor.
- a. 0.1V/s
- b. 10V/s
- c. 0.01V/s
- d. 1V/s
- ans:b
- 60. A  $10\mu F$  capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the capacitor voltage after a time equal to the time constant.
- a.36V
- b.36.6V
- c.63.2V
- d.63 V
- ans:c
- 61. A  $10\mu F$  capacitor in series with an 1 M Ohm resistor is connected across a100 V d. c. supply. Determine the voltage across the capacitor 3sec. after switch on.
- a.25.92V
- b.259.2V
- c.2.592V
- d.25V
- ans:a
- 62. A fully charged capacitor of  $10\mu F$  has a potential difference of 100V across its terminals. It is discharged through  $1~K\Omega$  resistor. Find Initial discharging current.
- a.1A
- b.10A
- c.0.01A
- d.0.1A
- ans:d

- 63. A fully charged capacitor of  $10\mu F$  has a potential difference of 100V across its terminals. It is discharged through 1 K Ohm resistor. Find discharging current at 2m Sec.
- a. 0.0818A
- b. 0.01A
- c. 0.00818A
- d. 1A
- ans:a
- 64. A fully charged capacitor of  $10\mu F$  has a potential difference of 100V across its terminals. It is discharged through 1 K Ohm resistor. Find initial rate of fall in voltage across capacitor.
- a. 10 <sup>4</sup> V/s
- b. -10 4 V/s
- c.  $-1^4 \text{ V/s}$
- d. 10A
- ans:b
- 65. A fully charged capacitor of  $10\mu F$  has a potential difference of 100V across its terminals. It is discharged through 1 K Ohm resistor. Find time constant of the circuit.
- a. 0.1sec
- b. 1sec
- c. 0.01sec
- d. 0.001sec
- ans:c
- 66. A capacitor consists of two similar plates each 10cm x 10cm mounted parallel and opposite to each other. What is the value of capacitance when distance between them is 1cm and dielectric used is air.
- a. 8.854 pF
- b. 8.854 μF
- c. 8.854 mF
- d. 8.854 F
- ans: a

- 67. The capacitance of capacitor formed by two parallel plates each 200 cm² in area separated by dielectric of 4mm thick is  $0.0004\mu F$ . If voltage of 20000 V is applied then the total charge on the plate is
- a. 8µC
- b. 8mC
- c. 8nC
- d. 8pC
- ans: a
- 68. A parallel plate capacitor has plate area of 2m<sup>2</sup> spaced by three slabs of dielectric materials. The relative permittivity's are 2,3 and 6 respectively and thickness are 0.4mm, 0.6mm and 0.12 mm respectively. Find the combined capacitance.
- a. 0.000295 x 10-6 F
- b. 0.00295 x 10-6 F
- c. 0.0295 x 10-6 F
- d. 0. 295 x 10-6 F
- ans: b
- 69. What is the unit of charge?
- a. Volt-Amp
- b. Henery
- c. Farad
- d. Coulomb
- ans: d
- 70. What will be the capacitance of four capacitors of equal capacitance 'C' when connected in parallel
- a. 4C
- b. C/4
- c. 3C/4
- d. C
- ans: a
- 71. A region around a stationary electric charge has

- a. magnetic field
- b. electric field
- c. magnetic field and electric field
- d. neither magnetic field nor electric field ans: b
- 72. One Farad is the same as
- a. One Coulomb/Volt
- b. One Joule/Coulomb
- c. One Joule/Volt
- d. One Coulomb /Joule

ans: a

- 73 . If Q be the charge and C be the capacitance then the energy stored in the capacitor is
- a. 1/2QC
- b. 1/QC
- c.  $Q^2/2C$
- d. Q/2C

ans: c

- 74.What capacitance must be placed in series with a 15 $\mu F$  capacitor to give a total capacitance of  $5\mu F$
- a. 4μF
- b. 7.5μF
- c. 10µF
- d. 25μF

ans: b

- 75. One Coulomb charge equals the charge on
- a. 6.42 x 10 <sup>18</sup> electrons
- b. 6.24 x 10 18 atoms
- c 6.24 x 10 <sup>12</sup>electrons
- d. none of these

ans: a

- 76. The capacitance of parallel plate capacitor is given as
- a.  $C = \epsilon_0 A / d$
- b. C =  $\epsilon_0 d / A$

c. 
$$C = \frac{\epsilon_0 \epsilon_r A}{d}$$
  
d.  $C = \epsilon_r A / d$   
ans: c

77. Two capacitors of 2  $\mu F$  and 4  $\mu F$  are connected in parallel across 100 V D.C. supply. Determine (i) Energy stored on each capacitor

- a. 0.1 J and 0.2 J
- b. 0.01 J and 0.02 J
- c 1Jand2J
- d. 0.001 J and 0.002 J

ans: b

78. The capacitance composit capacitor is given as

a. C = 
$$\frac{\in_{o}A}{\frac{d_{1}}{\in_{r_{1}}} + \frac{d_{2}}{\in_{r_{2}}} + \frac{d_{3}}{\in_{r_{3}}}}$$

b. C = 
$$\epsilon_0 d / A$$

c. C = 
$$\frac{\in_{o} \in_{r} A}{d}$$

$$d.C = \epsilon_r A / d$$

ans: a

79. The plate area of a parallel-plate capacitor is 0.01 sq. m. The distance between the plates is 2.5 cm. The insulating medium is air. Find its capacitance.

- a 3.54 x 10<sup>-12</sup> F
- b. 35.4 x 10<sup>-12</sup> F
- c 3.54 x 10<sup>-10</sup> F
- d. 3.54 x 10<sup>-11</sup> F

ans: a

80. The plate area of a parallel-plate capacitor is 0.01 sq. m. The distance between the plates is 2.5 cm. What would be its capacitance, if the space between the plates is filled with an insulating material of relative permittivity 5?

- a 177.1 x 10<sup>-12</sup> F
- b. 1.771 x 10<sup>-12</sup> F
- c . 17.71 x 10<sup>-10</sup> F
- d. 17.71 x 10<sup>-12</sup> F

ans: d

81.A parallel-plate capacitor has two plates each of area 2.5 m2 separated by three dielectric materials of thickness 1, 2 and 3 mm and relative permittivity's of 2, 4 and 8 respectively. Calculate (i) the capacitance of the capacitor

- a. 1.60 x 10-8 F
- b. 1.60 x 10-10 F
- c. 1.60 x 10-12 F
- d. 1.60 x 10-9 F

ans: a

## Unit II Part (b) AC FUNDAMENTALS

| 1. A standard sinusoidal voltage wave changes                | ans:a                                           |
|--------------------------------------------------------------|-------------------------------------------------|
| its polarity at                                              |                                                 |
| a. maximum value                                             | 6. The average value of a sine wave of maximum  |
| b. minimum value                                             | value I <sub>m</sub> over one cycle is          |
| c. zero value                                                | a. I <sub>m</sub> /π                            |
| d. none of the above                                         | b. 2I <sub>m</sub> /π                           |
| ans:c                                                        | c. zero                                         |
|                                                              | d. I <sub>m</sub> /2                            |
| 2. The period of a certain sine wave is 10                   | ans:c                                           |
| milliseconds. Its frequency is                               |                                                 |
| a.10 MHz                                                     | 7. The rms value of a sine wave of maximum      |
| b.10 KHz                                                     | value 10A equals a dc current of                |
| c.10 Hz                                                      | ampere.                                         |
| d.100 Hz                                                     | a.7.07                                          |
| ans:d                                                        | b.6.37                                          |
|                                                              | c.5                                             |
| 3. Two sine waves are said to be in phase with               | d.5.77                                          |
| each other if they achieve their                             | ans:a                                           |
| a. zero value at the same time                               |                                                 |
| b. maximum value at the time                                 | 8. The rms value of a sinusoidal voltage with   |
| c. minimum value at the same time                            | peak-to-peak value of 240 V isV.                |
| d. all of the above                                          | a.84.84                                         |
| ans:d                                                        | b.77.82                                         |
|                                                              | c.94.68                                         |
| 4. The distance occupied by one complete cycle               | d.89.15                                         |
| of the wave is called its                                    | ans:a                                           |
| a. time period                                               |                                                 |
| b. wavelength                                                | 9. The time period of a sinusoidal waveform     |
| c. velocity                                                  | with 200 Hz frequency issecond.                 |
| d. frequency                                                 | a.0.05                                          |
| ans:a                                                        | b.0.005                                         |
|                                                              | c.0.0005                                        |
| 5. The rms value of a sine wave of peak value $I_{\text{m}}$ | d.0.5                                           |
| is given by                                                  | ans:b                                           |
| a. I <sub>m</sub> /√2                                        |                                                 |
| b. I <sub>m</sub>                                            | 10. The peak value of a sine wave is 400 V. Its |
| c. I <sub>m</sub> /2                                         | average value is                                |
| d. $I_m/\pi$                                                 | a.254.6 V                                       |
|                                                              |                                                 |

| b.282.6 V                                       | a. 150 V                                                                    |
|-------------------------------------------------|-----------------------------------------------------------------------------|
| c.400 V                                         | b. 216.5 V                                                                  |
| d.565.5 V                                       | c. 125 V                                                                    |
| ans:a                                           | d.108.25 V                                                                  |
|                                                 | ans:b                                                                       |
| 11. The form factor of a sine wave is           |                                                                             |
| a.1.01                                          | 16. An alternating current is given by the                                  |
| b.1.11                                          | expression $i = 200 \sin(314t + \frac{\pi}{3})$ amperes.                    |
| c.1.21                                          | The maximum value and frequency of the                                      |
| d. none of the above                            | current are                                                                 |
| ans:b                                           | a. 200 A, 50 Hz                                                             |
|                                                 | b. 100√2, 50 Hz                                                             |
| 12. A current is said to be alternating when it | c. 200 A, 100 Hz                                                            |
| changes in                                      | d. 200 A, 25 Hz                                                             |
| a. magnitude only                               | ans:a                                                                       |
| b. direction only                               |                                                                             |
| c. both magnitude and direction                 | 17.The average value of the current $i=$                                    |
| d. neither magnitude nor direction              | $200 \sin t \text{ from } t = 0 \text{ to } t = \frac{\pi}{2} \text{ is } $ |
| ans:c                                           | a. 400 π                                                                    |
|                                                 |                                                                             |
| 13. An alternating current of 50 Hz frequency   | b. $\frac{400}{\pi}$                                                        |
| and 100 A maximum value is given by             | $c.\frac{1}{400}$                                                           |
| $a.i = 200 \sin 628t$                           | $d \cdot \frac{\pi}{400}$                                                   |
| $b.i = 100 \sin 314t$                           | ans:b                                                                       |
| $c.i = 100\sqrt{2} \sin 314t$                   | ans.b                                                                       |
| $d.i = 100\sqrt{2} \sin 157t$                   | 18. When two quantities are in quadrature, the                              |
| ans:b                                           | phase angles between them will be                                           |
|                                                 | a.45°                                                                       |
| 14. An alternating current of 50 Hz frequency   | b.90°                                                                       |
| has a maximum value of 100 A. Its value 1/600   | c.135°                                                                      |
| second after the instant current is zero will   | d.60°                                                                       |
| be                                              | ans:b                                                                       |
| a. 25 A                                         | 4113.13                                                                     |
| b. 12.5 A                                       | 19. The alternating voltage $e = 200 \sin 314t$ is                          |
| c. 50 A                                         | applied to a device which offers an ohmic                                   |
| d. 75 A                                         | resistance of 20 $\Omega$ to the flow of current in one                     |
| ans:c                                           | direction while entirely preventing the flow in                             |
|                                                 | the opposite direction. The average value of the                            |
| 15.A sinusoidal voltage varies from zero to a   | current will be                                                             |
| maximum of 250 V. The voltage at the instant of | a.5 A                                                                       |
| 60° of the cycle will be                        | b.3.18 A                                                                    |
|                                                 |                                                                             |

| c.1.57 A d.1.10 A ans:b  20. The ac system is preferred to dc system because                                                                                                                                                                                                                                                                                      | a. 0.02 second b. 0.01 second c. 0.04 second d. 0.05 second ans:c                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. ac voltages can be easily changed in magnitude b. dc motors do not have fine speed control c. high voltage ac transmission is less efficient d. dc voltage can not be used for domestic appliances ans:a                                                                                                                                                       | 25. A sine wave has a maximum value of 20 V. Its value at 135° is a. 10 V b. 14.14 V c. 15 V d. 5 V ans:b                                                                                                                                                                                                                                                                                   |
| 21.In ac system, we generate sine waveform because a. it can be easily drawn b. it produces least disturbance in electrical circuits c. it is nature's standard d. other waves can not be produced easily ans:b                                                                                                                                                   | 26. An alternating voltage is given by $v=30sin314t$ .The time taken by the voltage to reach 30 V for the first time isa. 0.02 second b. 0.1 second c. 0.03 second d. 0.005 second ans:d                                                                                                                                                                                                    |
| 22will work only on dc supply. a. electric lamp b. refrigerator c. electroplating d. heater ans:c  23.An alternating voltage is given by $v = 20 \sin 157t$ . The frequency of the alternating voltage is a.50 Hz b.25 Hz c.100 Hz d.75 Hz ans:b  24. An alternating current is given by $i = 10 \sin 314t$ . The time taken to generate two cycles of current is | 27. A sinusoidal current has a magnitude of 3 A at 120°. Its maximum value will be a. $\sqrt{3}$ A b. $\frac{\sqrt{3}}{2}$ A c. $2\sqrt{3}$ A d. 6 A ans:c  28. An alternating current is given by $i = 10 \sin 314t$ . Measuring time from $t = 0$ , the time taken by the current to reach +10 V for the second time is a. 0.05 second b. 0.1 second c. 0.025 second d. 0.02 second ans:c |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An alternating voltage is given by $v=% \frac{\partial v}{\partial x}$ | ans:c                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|
| a. $70.7  \text{V}$ b. $50  \text{V}$ c. $63.7  \text{V}$ d. $100  \text{V}$ ans:c  30. An alternating current whose average value is 1 A will produce1 A dc under similar conditions. a. less heat than b. more heat than c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will be a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $2^{\frac{Im}{2\pi}}$ c. $2^{\frac{Im}{2\pi}}$ b. $100  \text{V}$ , $100  \text{Hz}$ , $-90^{\circ}$ a. $141.42  \text{V}$ , $314.16  \text{Hz}$ , $90^{\circ}$ b. $100  \text{V}$ , $100  \text{Hz}$ , $-90^{\circ}$ c. $87.92  \text{V}$ , $56  \text{Hz}$ , $90^{\circ}$ d. $100  \text{V}$ , $50  \text{Hz}$ , $-90^{\circ}$ ans:d  35. When two sinusoidal waves are $90^{\circ}$ out phase, then a. both have their peak values at the san instant c. one has its peak value; while the other has a maximum value of $I_m$ . Its average value will ans.c  36. The direction of current in an ac circum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sin314t volts. Its average value will                                  |                                                                     |
| b. 50 V c. 63.7 V d. 100 V ans:c  30. An alternating current whose average value is 1 A will produce1 A dc under similar conditions. a. less heat than b. more heat than c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of I <sub>m</sub> . Its average value will  be a. Im_a b. Im_a c. 2 Im_a  voltage, frequency and phase angle a respectively a. 141.42 V, 314.16 Hz, 90° b. 100 V, 100 Hz, -90° c. 87.92 V, 56 Hz, 90° d. 100 V,50 Hz, -90° ans:d  35. When two sinusoidal waves are 90° out phase, then a. both have their peak values at the san instant c. one has its peak value; while the other has a conce of these ans:c  36. The direction of current in an ac circum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | 34. A sinusoidal voltage is represented as $v=$                     |
| b. 50 V c. 63.7 V d. 100 V ans:c  30. An alternating current whose average value is 1 A will produce1 A dc under similar conditions. a. less heat than b. more heat than c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of I <sub>m</sub> . Its average value will be a. Imax_m b. Imax_m b. Imax_m c. 2 Imax_m b. Imax_m c. 2 Imax_m b. Imax_m c. 2 Imax_m c. 31. A d. 31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7 V                                                                  | $141.4 \sin(314.18t - \frac{\pi}{2})$ . Its rms value of            |
| c. $63.7  \text{V}$ d. $100  \text{V}$ ans:c  b. $100  \text{W}$ , $100  \text{Hz}$ , $90^\circ$ c. $87.92  \text{W}$ , $56  \text{Hz}$ , $90^\circ$ d. $100  \text{W}$ , $50  \text{Hz}$ , $-90^\circ$ ans:d  similar conditions.  a. less heat than  b. more heat than  c. the same heat as  d. none of the above  ans:b  35. When two sinusoidal waves are $90^\circ$ out phase, then  a. both have their peak values at the san instant  b. both have their minimum values at the san instant  c. one has its peak value; while the other have row value  d. none of these  a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$                                                                                                                                               | ) V                                                                    | 2                                                                   |
| d. 100 V ans:c  b. 100 V, 100 Hz, -90°  c. 87.92 V, 56 Hz, 90°  d. 100 V,50 Hz, -90°  d. 100 V,50 Hz, -90°  ans:d  35. When two sinusoidal waves are 90° out phase, then  c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of I <sub>m</sub> . Its average value will be  a. \frac{Im}{2\pi} a. \frac{Im}{2\pi} b. \frac{Im}{2\pi} c. 2 \frac{Im}{2\pi} 36. The direction of current in an ac circue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7 V                                                                   |                                                                     |
| ans:c  b. 100 V, 100 Hz, -90°  c. 87.92 V, 56 Hz, 90°  d. 100 V,50 Hz, -90°  d. 100 V,50 Hz, -90°  ans:d  ans:d  ans:d  ans:d  ans:d  35. When two sinusoidal waves are 90° out phase, then  c. the same heat as  d. none of the above  ans:b  b. both have their peak values at the same instant  b. both have their minimum values at the same instant  c. one has its peak value; while the other have zero value  d. none of these  a. \frac{Im}{2\pi}  a. \frac{Im}{2\pi}  c. 2 \frac{Im}{2\pi}  36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 V                                                                   | · · · · · · · · · · · · · · · · · · ·                               |
| 30. An alternating current whose average value is 1 A will produce1 A dc under similar conditions.  a. less heat than b. more heat than c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will be a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $2\frac{Im}{2\pi}$ c. $2\frac{Im}{2\pi$ |                                                                        |                                                                     |
| 30. An alternating current whose average value is 1 A will produce1 A dc under similar conditions.  a. less heat than  b. more heat than  c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will be  a. $\frac{Im}{2\pi}$ b. $\frac{Im}{2\pi}$ c. $2\frac{Im}{2\pi}$ d. 100 V,50 Hz, -90° ans:d  35. When two sinusoidal waves are 90° out phase, then a. both have their peak values at the same instant c. one has its peak value; while the other has a considered ans:c  36. The direction of current in an accircum and a circum and a circum and a circum and and a circum and and an accircum and an accircum and an accircum and and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                     |
| is 1 A will produce1 A dc under similar conditions.  a. less heat than  b. more heat than  c. the same heat as d. none of the above ans:b  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will be  a. $I_m$ b. $I_m$ ans:c  35. When two sinusoidal waves are 90° out phase, then  a. both have their peak values at the same instant  c. one has its peak value; while the other has zero value  d. none of these ans:c  36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | An alternating current whose average value                             |                                                                     |
| similar conditions.  a. less heat than  b. more heat than  c. the same heat as d. none of the above  ans:b  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will  be  a. $I_m$ a. less heat than  35. When two sinusoidal waves are 90° out phase, then  a. both have their peak values at the same instant  b. both have their minimum values at the same instant  c. one has its peak value; while the other has a zero value  d. none of these  ans:c  36. The direction of current in an ac circum and accircum accircum and accircum and accircum and accircum and accircum and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A will produce1 A dc under                                             |                                                                     |
| b. more heat than phase, then a. both have their peak values at the sand instant b. both have their minimum values at the sand instant c. one has its peak value; while the other has a maximum value of $I_m$ . Its average value will be d. none of these as:  a. both have their minimum values at the sand instant c. one has its peak value; while the other has a zero value d. none of these ans:c  b. $\frac{Im}{2\pi}$ ans:c  36. The direction of current in an ac circum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ar conditions.                                                         |                                                                     |
| b. more heat than c. the same heat as a. both have their peak values at the same d. none of the above instant b. both have their minimum values at the same instant ans:b b. both have their minimum values at the same instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one has its peak value; while the other how instant c. one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ss heat than                                                           | 35. When two sinusoidal waves are 90° out of                        |
| c. the same heat as d. none of the above ans:b  a. both have their peak values at the same instant b. both have their minimum values at the same instant c. one has its peak value; while the other has a maximum value of $I_m$ . Its average value will be be a. $\frac{Im}{\pi}$ a. $\frac{Im}{\pi}$ ans:c b. $\frac{Im}{2\pi}$ c. $\frac{Im}{2\pi}$ 36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ore heat than                                                          |                                                                     |
| d. none of the above instant  b. both have their minimum values at the san instant  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will zero value  be  a. $\frac{Im}{\pi}$ ans:c  b. $\frac{Im}{2\pi}$ c. $2\frac{Im}{\pi}$ 36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e same heat as                                                         | · · · · · · · · · · · · · · · · · · ·                               |
| ans:b  b. both have their minimum values at the san instant  31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will be d. none of these ans:c  b. both have their minimum values at the san instant c. one has its peak value; while the other has a zero value d. none of these ans:c  b. $\frac{Im}{2\pi}$ ans:c  36. The direction of current in an ac circum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | one of the above                                                       | -                                                                   |
| 31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will be d. none of these a. $\frac{Im}{2\pi}$ a. $\frac{Im}{2\pi}$ 36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o                                                                      |                                                                     |
| 31. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will zero value be d. none of these as. $\frac{Im}{\pi}$ ans:c ans:c a. $\frac{Im}{2\pi}$ 36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |                                                                     |
| maximum value of $I_m$ . Its average value will zero value be d. none of these a. $\frac{Im}{\pi}$ ans:c ans:c b. $\frac{Im}{2\pi}$ 36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A sinusoidal alternating current has a                                 |                                                                     |
| be d. none of these a. $\frac{lm}{\pi}$ ans:c b. $\frac{lm}{2\pi}$ 36. The direction of current in an ac circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mum value of I <sub>m</sub> . Its average value will                   | •                                                                   |
| a. $\frac{lm}{\pi}$ ans:c b. $\frac{lm}{2\pi}$ 36. The direction of current in an ac circu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |                                                                     |
| b. $\frac{lm}{2\pi}$ 36. The direction of current in an ac circu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                     |
| $\frac{Im}{c.2}$ 36. The direction of current in an ac circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                                                     |
| c. 2 <del>''''</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | 36. The direction of current in an ac circuit                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{m}{\pi}$                                                        |                                                                     |
| d.none of the above a. always in one direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne of the above                                                        | <del></del>                                                         |
| ans:c b. varying from time to time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                     |
| c. unpredictable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | , -                                                                 |
| 32. The area of a sinusoidal wave over a half- d. from positive to negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The area of a sinusoidal wave over a half-                             | ·                                                                   |
| cycle is ans:b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e is                                                                   | -                                                                   |
| a. $max.value \div 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıx.value ÷ 2                                                           | 0.10.12                                                             |
| $b.2 \times max. value$ 37. Consider the sinusoidal waves: $A \sin(\omega t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < max. value                                                           | 37. Consider the sinusoidal waves: $A \sin(\omega t +$              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ux.value \div \pi$                                                    | $30^{\circ}$ ) and $B\sin(\omega t - 60^{\circ})$ . The phase angle |
| d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $nax. value \div 2\pi$                                                 | relationship between the two waves                                  |
| ans:b a. B-wave lags A-wave by 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o                                                                      |                                                                     |
| b. B-wave lags A-wave by 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                                                                     |
| 33. An alternating voltage is given by $v = \frac{1}{2}$ c. B-wave lags A-wave by 30°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An alternating voltage is given by $v=% \frac{\partial u}{\partial x}$ | •                                                                   |
| 200 sin314t. Its rms value will be d. B-wave and A-wave are in phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sin314t. Its rms value will be                                         | ,                                                                   |
| a. 100 V ans:a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 V                                                                   |                                                                     |
| b. 282.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.8 V                                                                 | -                                                                   |
| c. 141.4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4 V                                                                  |                                                                     |
| d. 121.4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.4 V                                                                 |                                                                     |

| 38. A sinusoidal voltage is expressed as $v =$                                | d. none of the above                                    |
|-------------------------------------------------------------------------------|---------------------------------------------------------|
| $20\sin(314.16t + \frac{\pi}{3})$ V. Its frequency and                        | ans:c                                                   |
| phase angle respectively are                                                  | 42. The rms value of sinusoidally varying surrent       |
| a. 314.16 Hz, 60°                                                             | 43. The rms value of sinusoidally varying current       |
| b. 60Hz, 60°                                                                  | isthat of its average value.                            |
| c. 50 Hz, 60°                                                                 | a. more than                                            |
| d. 50 Hz, -60°                                                                | b. less than                                            |
| ans:c                                                                         | c. same as                                              |
|                                                                               | d. none of the above                                    |
| 39. A sinusoidal voltage v <sub>1</sub> leads another                         | ans:a                                                   |
| sinusoidal voltage v <sub>2</sub> by 180°. Then                               |                                                         |
| a. voltage v <sub>2</sub> leads voltage v <sub>1</sub> by 180°                | 44. Alternating voltages and currents are               |
| b. both voltage have their zero values at the                                 | expressed in rms values because                         |
| same time                                                                     | a. they can be easily determined                        |
| c. both voltages have their peak values at the                                | b. calculations become very simple                      |
| same time                                                                     | c. they give comparison with dc                         |
| d. all of the above                                                           | d. none of the above                                    |
| ans:d                                                                         | ans:c                                                   |
| alis.u                                                                        |                                                         |
| 40 The rms value of an as sinusoidal current is                               | 45. The average value of $\sin^2\theta$ over a complete |
| 40.The rms value of an ac sinusoidal current is                               | cycle is                                                |
| 10 A. Its peak value is                                                       | a. +1                                                   |
| a. 7.07 A                                                                     | b1                                                      |
| b. 14.14 A                                                                    |                                                         |
| c. 10 A                                                                       | c. $\frac{1}{2}$                                        |
| d. 28.28 A                                                                    | d. zero                                                 |
| ans:b                                                                         | ans:c                                                   |
| 41. If $A=10\angle 45^{\circ}$ and $B=5\angle 15^{\circ}$ , then the value of | 46.The average value of sinθ over a complete            |
| A/B will be                                                                   | cycle is                                                |
| a. 50∠60°                                                                     | a. zero                                                 |
| b. 2∠60°                                                                      | b. +1                                                   |
| c. 2∠-30°                                                                     | c1                                                      |
| d. 2∠30°                                                                      |                                                         |
| ans:d                                                                         | d. $\frac{1}{2}$                                        |
| G.1515                                                                        | ans:a                                                   |
| 42. When a phasor is multiplied by –j, it gets                                |                                                         |
| rotated through in the counterclockwise                                       | 47. An alternating current is given by $i =$            |
| direction.                                                                    | $Im\ sin	heta$ . The average value of squared wave of   |
| a.90°                                                                         | this current over a complete cycle is                   |
| b.180°                                                                        | a. I <sup>2</sup> <sub>m</sub> /2                       |
|                                                                               | b. I <sub>m</sub> /π                                    |
| c.270°                                                                        | c. 2I <sub>m</sub> /π                                   |

| d. 2I <sub>m</sub>                              | 53. The peak factor of a sine waveform         |
|-------------------------------------------------|------------------------------------------------|
| ans:a                                           | is                                             |
|                                                 | a.1.11                                         |
| 48. The form factor of a sinusoidal wave        | b.1.414                                        |
| is                                              | c.2                                            |
| a.1.414                                         | d.1.5                                          |
| b.1.11                                          | ans:b                                          |
| c.2                                             |                                                |
| d.1.5                                           | 54. When a 15V square wave is connected        |
| ans:b                                           | across a 50V ac voltmeter, it will read        |
|                                                 | a.15V                                          |
| 49. The filament of a vacuum tube requires 0.4A | $b.15 \times \sqrt{2} \text{ V}$               |
| dc to heat it. The rms value of ac required .   | c.15/ $\sqrt{2}$ V                             |
| is                                              | d.none of the above                            |
| $a.0.4 	imes \sqrt{2} A$                        | ans:a                                          |
| $b.0.4 \div 2 A$                                |                                                |
| $c.0.8 \div \sqrt{2} A$                         | 55.A sine wave has a frequency of 50 Hz. Its   |
| d. 0.4 A                                        | angular frequency isradian/second.             |
| ans:d                                           | a.100π                                         |
|                                                 | b.50π                                          |
| 50. A100 V peak ac is as effective asdc.        | c.25π                                          |
| a. 100 V                                        | d.5π                                           |
| b. 50 V                                         | ans:a                                          |
| c. 70.7 V                                       |                                                |
| d. none of the above                            | 56. The period of a wave is                    |
| ans:c                                           | a. the same as frequency                       |
|                                                 | b. time required to complete one cycle         |
| 51. The form factor of awave is 1.              | c. expressed in amperes                        |
| a. sinusoidal                                   | d. none of the above                           |
| b. square                                       | ans:b                                          |
| c. triangular                                   |                                                |
| d. sawtooth                                     | 57. The form factor is the ratio of            |
| ans:b                                           | a. peak value to rms value                     |
|                                                 | b. rms value to average value                  |
| 52. Out of the followingwave is the             | c. average value to rms value                  |
| peakiest.                                       | d. none of the above                           |
| a. sinusoidal                                   | ans:b                                          |
| b. square                                       |                                                |
| c. rectangualr                                  | 58. The period of a sine wave is 1/50 seconds. |
| d. triangular                                   | Its frequency is                               |
| ans:d                                           | a. 20 Hz                                       |

| b. 30 Hz c. 40 Hz d. 50 HZ ans:d                                                                                                                                  | <ul><li>a. mean value</li><li>b. rms value</li><li>c. peak value</li><li>d. average value</li><li>ans:b</li></ul>                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 59. An ac current is given by $i=200 \sin 100\pi t$ . It will achieve a value of 100A aftersecond. a. $\frac{1}{900}$ b. $\frac{1}{800}$ c. $\frac{1}{600}$ ans:d | 64. The rms value and mean value is the same in the case of a. traingular wave b. sine wave c. square wave d. half wave rectified sine wave ans:c                              |
| 60. A heater is rated as 230V, 10KW, AC. The value of 230V refers to a. average voltage b. rms voltage c. peak voltage d. none of the above                       | 65. For the same peak value which of the following wave will have the highest rms value? a.square wave b.half wave rectified sine wave c.triangular wave d.sine wave ans:a     |
| ans:b  61. The peak value of a sine wave is 200V. Its average value is a.127.4V b.141.4V c.282.8V d.200V ans:a                                                    | 66. For the same peak value which of the following wave will have the least mean value?  a. half wave rectified sine wave b. triangular wave c. sine wave d. square wave ans:a |
| 62. The rms value of a sine wave is 100A. Its peak value is a.70.7A b.141.4A c.150A d.282.8A ans:b                                                                | 67. For a sine wave with peak value I <sub>max</sub> , the rms value is a. 0.5I <sub>max</sub> b. 0.707I <sub>max</sub> c. 0.9I <sub>max</sub> d. 1.414I <sub>max</sub> ans:b  |
| 63. The voltage of domestic supply is 220V. This figure represents                                                                                                | <ul><li>68. Form factor is the ratio of</li><li>a. average value/rms value</li><li>b. average value/peak value</li><li>c. rms value/average value</li></ul>                    |

| d. rms value/peak value                                    | d.346V                                            |
|------------------------------------------------------------|---------------------------------------------------|
| ans:c                                                      | ans:d                                             |
|                                                            |                                                   |
| 68. For a sine wave with peak value $E_{\text{max}}$ , the | 73. A sine wave of voltage varies from zero to    |
| average value is                                           | maximum of 200V. How much is the voltage at       |
| a. 0.636 E <sub>max</sub>                                  | the instant of 30° of the cycle?                  |
| b. 0.707E <sub>max</sub>                                   | a.50V                                             |
| c. 0.434 E <sub>max</sub>                                  | b.82.8V                                           |
| d. 1.414E <sub>max</sub>                                   | c.100V                                            |
| ans:a                                                      | d.173.2V                                          |
|                                                            | ans:c                                             |
| 69. The current in a circuit is given by: $i =$            |                                                   |
| $100 \sin 314t$ amperes. The maximum value and             | 74. How much rms current does a 300W, 200V        |
| frequency of current are                                   | bulb take from the 200V, 50 Hz power line?        |
| a.50√2 A, 100 Hz                                           | a.0.5 A                                           |
| b.100√2 A, 100 Hz                                          | b.1.5 A                                           |
| c. 100 A, 50 Hz                                            | c.2 A                                             |
| d. 70.7 A, 50 Hz                                           | d. 3 A                                            |
| ans:c                                                      | ans:b                                             |
| 70. For a frequency of 200 Hz, the time period             | 75. The rms value of a half-wave rectified        |
| will be                                                    | current is 100 A. Its value for full-wave         |
| a. 0.05 S                                                  | rectification would beamperes.                    |
| b. 0.005 S                                                 | a.141.4                                           |
| c. 0.0005 S                                                | b.200                                             |
| d. 0.5 S                                                   | c. 200/π                                          |
| ans:b                                                      | d. 40/π                                           |
|                                                            | ans:a                                             |
| 71. An ac voltage of 50 Hz has a maximum value             |                                                   |
| of 50 V. Its value after 1/600 second after the            | 76. The rms value of a sinusoidal ac current is   |
| instant the current is zero will be                        | equal to its value at an angle ofdegrees.         |
| a.5V                                                       | a.90                                              |
| b.12.5V                                                    | b.60                                              |
| c.25V                                                      | c.45                                              |
| d.43.8V                                                    | d.30                                              |
| ans:c                                                      | ans:c                                             |
| 72. For 200V rms value triangular wave, the                | 77. The rms value of alternating current is given |
| peak voltage will be                                       | by steady (dc) current which when flowing         |
| a.200V                                                     | through a given circuit for a given time          |
| b.222V                                                     | produces                                          |
| c.282V                                                     |                                                   |

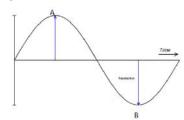
| a. the more heat than produced by ac when flowing through the same circuit | d. 50 Hz<br>ans:d                                       |
|----------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                            | ans.u                                                   |
| b. the same heat as produced by ac when                                    | 82. The rms value of half wave rectified sine           |
| flowing through the same circuit                                           | wave is 200V. The rms value of full wave                |
| c. the less heat than produced by ac flowing                               |                                                         |
| through the same circuit                                                   | rectified ac will be                                    |
| d. none of the above                                                       | a.282.8V                                                |
| ans:b                                                                      | b.141.4V                                                |
|                                                                            | c.111V                                                  |
| 78. The square waveform of current has                                     | d. 100V                                                 |
| following relation between rms value and average value:                    | ans:a                                                   |
| a. rms value is equal to average value                                     | 83. The voltage in a circuit follows the law: $v=$      |
| b. rms value of current is greater than average                            | $100~sin\omega t$ . If the frequency is 25 Hz, how long |
| value                                                                      | will                                                    |
| c. rms value of current is less than average                               | it take for the voltage to rise to 50V?                 |
| value                                                                      | a. $\frac{1}{50}$ S                                     |
| d. none of the above ans:a                                                 | b. $\frac{1}{100}$ S                                    |
| u113.u                                                                     | $c.\frac{1}{300}S$                                      |
| 79. If a sinusoidal wave has frequency of 50 Hz                            |                                                         |
| with 30A rms current, which of the following                               | d. $\frac{1}{600}$ S                                    |
| equation represents the wave?                                              | ans:c                                                   |
| $a.42.42 \sin 314t$                                                        |                                                         |
| b.60 sin25t                                                                | 84. The negative maximum of a cosine wave               |
| $c.30 \sin 50t$                                                            | occurs at                                               |
| d.84.84 <i>sin25t</i>                                                      | a.30°                                                   |
|                                                                            | b.45°                                                   |
| ans:a                                                                      | c.90°                                                   |
|                                                                            | d.180°                                                  |
| 80. Which of the following waves has the                                   | ans:d                                                   |
| highest value of peak factor?                                              |                                                         |
| a. square wave                                                             | 85. The rms value of pure cosine function               |
| b. sine wave                                                               | is                                                      |
| c. half wave rectified sine wave                                           | a. 0.5 of peak value                                    |
| d. triangular wave                                                         | b. 0.707 of peak value                                  |
| ans:c                                                                      | c. same as peak value                                   |
|                                                                            | d. zero                                                 |
| 81.The frequency of domestic power supply in India is                      | ans:b                                                   |
| a. 200 Hz                                                                  |                                                         |
| b. 100 Hz                                                                  |                                                         |
| c. 60 Hz                                                                   |                                                         |

| 86. An alternating voltage is given in volts by expression $v=326 \ sin 314t$ . Its rms value and frequency are | supplied 500 W output (i.e. no losses) at the new voltage it will supplya. 2500 W                |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| a.230V,50 Hz                                                                                                    | b. 2000 W                                                                                        |
| b. 230V,100 Hz                                                                                                  | c. 500 W                                                                                         |
| c. 326V,50 Hz                                                                                                   | d. 250 W                                                                                         |
| d. 326V,100 Hz                                                                                                  | ans:b                                                                                            |
| ans:a                                                                                                           |                                                                                                  |
|                                                                                                                 | 91. The direction of current in an ac                                                            |
| 87. According to which of the alternating                                                                       | circuit                                                                                          |
| current values in the cross sectional area of a                                                                 | a. is from positive to negative                                                                  |
| conductor with regard to the heating effect is                                                                  | b. is always in one direction                                                                    |
| selected?                                                                                                       | c. varies from instant to instant                                                                |
| a. peak value                                                                                                   | d. can not be determined                                                                         |
| b. half peak value                                                                                              | ans:c                                                                                            |
| c. average value                                                                                                |                                                                                                  |
| d. rms value                                                                                                    | 92. The angular frequency of an alternating                                                      |
| ans:d                                                                                                           | quantity is a mathematical quantity obtained by multiplying the frequency "f" of the alternating |
| 88. The frequency of an alternating current                                                                     | quantity by a factor                                                                             |
| is                                                                                                              | $\frac{\pi}{2}$                                                                                  |
| a. the speed with which the alternator runs                                                                     | b.π                                                                                              |
| b. the number of cycles generated in one                                                                        | c.2π                                                                                             |
| minute                                                                                                          | $d.4\pi$                                                                                         |
| c. the number of waves passing through a point                                                                  | ans:c                                                                                            |
| in one second                                                                                                   | ans.c                                                                                            |
| d. the number of electrons passing through a                                                                    | 93. The average value of an unsymmetrical                                                        |
| point in one second                                                                                             | alternating quantity is calculated over                                                          |
| ans:c                                                                                                           | the                                                                                              |
|                                                                                                                 | a. whole cycle                                                                                   |
| 89. The equation of 50 Hz current sine wave                                                                     | b. half cycle                                                                                    |
| having rms value of 60 A is                                                                                     | c. unsymmetrical part of the waveform                                                            |
| $a.60 \sin 25t$                                                                                                 | d. first two cycles                                                                              |
| $b.60 \sin 50t$                                                                                                 | ans:a                                                                                            |
| c.84.84 sin314t                                                                                                 | 4115.4                                                                                           |
| d42.42 sin314t.                                                                                                 | 94. The mean value of the current $i=20 \sin\theta$                                              |
| ans:c                                                                                                           | from $\theta$ =0 to $\theta$ = $\frac{\pi}{2}$ is                                                |
|                                                                                                                 | 2                                                                                                |
| 90. An electric iron designed for 110 V AC                                                                      | a.40π<br>. 40                                                                                    |
| supply was rated at 500 W. It was put across a                                                                  | $b.\frac{40}{\pi}$                                                                               |
| 220 V supply. Assuming that at 110 V, it                                                                        | $c.\frac{1}{40}$                                                                                 |

| $d.\frac{\pi}{40}$                                        | b. 10 A, 17.07 A                                 |
|-----------------------------------------------------------|--------------------------------------------------|
| ans:b                                                     | c. 10 A, 12.25 A                                 |
|                                                           | d. 16.36 A, 12.2 A                               |
| 95. A constant current of 2.8A exists in a                | ans:c                                            |
| resistor. The rms value of current is                     |                                                  |
| a. 2.8 A                                                  | 100. The size (cross-sectional area) of a        |
| b. about 2 A                                              | conductor, with regard to the heating effect, is |
| c. 1.4 A                                                  | determined on the basis of value of              |
| d. undefined                                              | current to be carried by it                      |
| ans:a                                                     | a. average value                                 |
|                                                           | b. peak value                                    |
| 96. An alternating current is represented as $i =$        | c. rms value                                     |
| $70.7 \sin(520t + \frac{\pi}{6})$ . The frequency and rms | d. peak to peak value                            |
| value of the current are                                  | ans:c                                            |
| a. 82.76 Hz, 50 A                                         |                                                  |
| b. 41.38 Hz, 25 A                                         | 101. The form factor for dc supply voltage is    |
| c. 41.38 Hz, 50 A                                         | always                                           |
| d. 82.76 Hz, 25 A                                         | a. zero                                          |
| ans:a                                                     | b. unity                                         |
| uns.u                                                     | c. infinity                                      |
| 97. The time period or periodic time T of an              | d. any value between 0 and 1                     |
| alternating quantity is the time taken in seconds         | ans:b                                            |
| to complete                                               |                                                  |
| a. one cycle                                              | 102. The varying alternating quantity            |
| b. alternation                                            | can be represented as phasor.                    |
| c. none of the above                                      | a) circular                                      |
| d. Half cycle                                             | b) sinusoidally                                  |
| ·                                                         | c) rectangular                                   |
| ans: a                                                    | d) triagular                                     |
| OR. The time period of an alternating quantity is         | ans:b                                            |
| 98. The time period of an alternating quantity is         |                                                  |
| 0.02 second. Its frequency will be                        | 103. The phasors are assumed to be rotated in    |
| a. 25 Hz                                                  | direction.                                       |
| b. 50 Hz                                                  | a) clockwise                                     |
| c. 100 Hz                                                 | b) anticlockwise                                 |
| d. 0.02 Hz                                                | c) circular                                      |
| ans: b                                                    | d) all above                                     |
| 99. An ac current is given as i = 10 + 10 sin 314 t,      | ans:b                                            |
| the average and rms values of the current                 | 104 la proctice alternation constitue            |
| are                                                       | 104. In practice, alternating quantities are     |
| a. 16.36 A, 17.07 A                                       | represented by their values a. rms               |

- b. average
- c. rectangular
- d. polar

ans:a

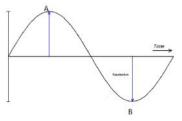

- 105. Alternating quantities of \_\_\_\_\_ frequencies can be represented on same phasor diagram.
- a. Same
- b. Different
- c. multiple
- d. all above

ans: a

- 106. The phase of alternating quantity at any particular instant is the fraction of \_\_\_\_\_
- a. phase
- b. time
- c. time period
- d. all above

ans:c

107.




In the above figure, the phase quantity at A is

- a. T
- b. T/2
- c. T/3
- d. T/4

ans:d

108.



In the above figure, the phase quantity at B is

- a. T
- b.T/2
- c.3T/4
- d. T/4

ans:c

- 109. When phase of an alternating quantity is positive it means that quantity has some \_\_\_\_\_ instantaneous value at t=0
- a. zero
- b. positive
- c. negative
- d. none of the above

ans:b

- 110. When phase of an alternating quantity is negative it means that quantity has some \_\_\_\_\_ instantaneous value at t=0
- a. zero
- b. positive
- c. negative
- d. none of the above

ans:c

- 111. The difference between the \_\_\_\_\_ of two alternating quantities is called the phase difference.
- a. time
- b. phase angle
- c. Lengths
- d. both a and b

| 112. The difference between the phase of two alternating quantities is called the  a. phase difference b. sine difference c. length difference d. none of the above ans:a | <ul> <li>117. If v = Vm Sin ωt and i = Im Sin (ωt-Φ), the 'v' is said to 'i' by angle Φ</li> <li>a. in phase</li> <li>b. lagging</li> <li>c. leading</li> <li>d. all above</li> <li>ans:c</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 113. When phase difference between the two                                                                                                                                | 118. If $v = Vm Sin \omega t$ and $i = Im Sin (\omega t + \Phi)$ , the                                                                                                                               |
| alternating quantities is zero, the two quantities                                                                                                                        | 'i' is said to 'v' by angle Φ                                                                                                                                                                        |
| are said to be in                                                                                                                                                         | a. in phase                                                                                                                                                                                          |
| a. tandom                                                                                                                                                                 | b. lagging                                                                                                                                                                                           |
| b. length                                                                                                                                                                 | c. leading                                                                                                                                                                                           |
| c. phase                                                                                                                                                                  | d. all above                                                                                                                                                                                         |
| d. time                                                                                                                                                                   | ans:c                                                                                                                                                                                                |
| ans:c                                                                                                                                                                     |                                                                                                                                                                                                      |
|                                                                                                                                                                           | 119. If $v = Vm Sin \omega t$ and $i = Im Sin (\omega t + \Phi)$ , the                                                                                                                               |
| 114. When between the two                                                                                                                                                 | 'v' is said to 'i' by angle $\Phi$                                                                                                                                                                   |
| alternating quantities is zero, the two quantities                                                                                                                        | a. in phase                                                                                                                                                                                          |
| are said to be in phase.                                                                                                                                                  | b. lag                                                                                                                                                                                               |
| a. time difference                                                                                                                                                        | c. lead                                                                                                                                                                                              |
| b. length difference                                                                                                                                                      | d. all above                                                                                                                                                                                         |
| c. phase difference                                                                                                                                                       | ans:b                                                                                                                                                                                                |
| d. none of the above                                                                                                                                                      |                                                                                                                                                                                                      |
| ans:c                                                                                                                                                                     | 120. If v = Vm Sin $\omega t$ and i = Im Sin $\omega t$ , the 'i' is                                                                                                                                 |
|                                                                                                                                                                           | said to 'v' by angle $\Phi$                                                                                                                                                                          |
| 115. When phase difference between the two                                                                                                                                | a. in phase                                                                                                                                                                                          |
| alternating quantities is, the two                                                                                                                                        | b. lag                                                                                                                                                                                               |
| quantities are said to be in phase.                                                                                                                                       | c. lead                                                                                                                                                                                              |
| a. one                                                                                                                                                                    | d. all above                                                                                                                                                                                         |
| b. unity                                                                                                                                                                  | ans:a                                                                                                                                                                                                |
| c. zero                                                                                                                                                                   |                                                                                                                                                                                                      |
| d. π/2                                                                                                                                                                    | 121. With respect to reference, plus sign of                                                                                                                                                         |
| ans:c                                                                                                                                                                     | angle indicates                                                                                                                                                                                      |
|                                                                                                                                                                           | a. leading                                                                                                                                                                                           |
| 116. If $v = Vm Sin \omega t$ and $i = Im Sin (\omega t - \Phi)$ , the 'i'                                                                                                | b. lagging                                                                                                                                                                                           |
| is said to be 'v' by angle $\Phi$                                                                                                                                         | c. in phase                                                                                                                                                                                          |
| a. in phase                                                                                                                                                               | d. none of the above                                                                                                                                                                                 |
| b. lagging                                                                                                                                                                | ans:a                                                                                                                                                                                                |
| c. leading                                                                                                                                                                |                                                                                                                                                                                                      |
| d. all above                                                                                                                                                              | 122. With respect to reference, minus sign of                                                                                                                                                        |
| ans:b                                                                                                                                                                     | angle indicates                                                                                                                                                                                      |

| a. leading                                       | 127. The lagging and leading word is relative to                   |
|--------------------------------------------------|--------------------------------------------------------------------|
| b. lagging                                       | the                                                                |
| c. in phase                                      | a. base                                                            |
| d. none of the above                             | b. range                                                           |
| ans:b                                            | c. reference                                                       |
|                                                  | d. angle                                                           |
| 123. With respect to reference, sign of          | ans:c                                                              |
| angle indicates lead.                            |                                                                    |
| a. division                                      | 128. Polar form of v = 100 $sin(100\pi t + \pi/6)$ Volt is         |
| b. plus                                          |                                                                    |
| c. minus                                         | a.61.2371+j35.3553                                                 |
| d.dot                                            | b.70.7106∟30                                                       |
| ans:b                                            | c. 61.2371∟35.3553                                                 |
|                                                  | d. 70.710+ j30                                                     |
| 124. With respect to reference, sign of          | ans:b                                                              |
| angle indicates lag.                             |                                                                    |
| a. division                                      | 129. Rectangular form of V= 100 $\sin(100\pi t + \pi/6)$           |
| b. plus                                          | Volt is                                                            |
| c. minus                                         | a.61.2371+j35.3553                                                 |
| d.dot                                            | b.70.7106∟30                                                       |
| ans:c                                            | c. 61.2371∟35.3553                                                 |
|                                                  | d. 70.710+ j30                                                     |
| 125. The diagram in which different sinusoidal   | ans:a                                                              |
| alternating quantities of the same frequency,    |                                                                    |
| are represented by individual phasors indicating | 130. RMS value of current I = 25 + j40 Amp is                      |
| exact phase relationship is called               | <u></u>                                                            |
| a. graph                                         | a.57.99                                                            |
| b. still diagram                                 | b.47.1699                                                          |
| c. phasor diagram                                | c.60                                                               |
| d. picture                                       | d.30                                                               |
| ans:c                                            | ans:b                                                              |
| 126. The diagram in which different sinusoidal   | 131. Two currents $I_1 = 10 \angle 50$ and $I_2 = 5 \angle -100$ A |
| alternating quantities of the same, are          | flow in single phase AC circuit. Then $I_1+I_2 =$                  |
| represented by individual phasors indicating     | <u> </u>                                                           |
| exact phase relationship is called phasor        | a. 5.5596+ j4.924 A                                                |
| diagram.                                         | b. 5.5596∠4.924 A                                                  |
| a. time                                          | c. 7.296+ j12.58 A                                                 |
| b. frequency                                     | d. None of the above                                               |
| c. sign                                          | ans:a                                                              |
| d. shape                                         | unsia                                                              |
| ans:b                                            |                                                                    |
| WITO IN                                          |                                                                    |

| 132. Two currents $I_1 = 10 \angle 50$ and $I_2 = 5 \angle -100$ A   | b. 24-j14                                                     |
|----------------------------------------------------------------------|---------------------------------------------------------------|
| flow in single phase AC circuit. Then I <sub>1</sub> -I <sub>2</sub> | c38-j34                                                       |
| =                                                                    | d24-j14                                                       |
| a. 5.5596+ j4.924 A                                                  | ans:c                                                         |
| b. 5.5596                                                            |                                                               |
| c. 7.296+ j12.58 A                                                   | 138. A sinusoidal voltage is represented as: v =              |
| d. None of the above                                                 | 141.4 $\sin(314.18t-\pi/2)$ . Its rms value of voltage,       |
| ans:c                                                                | frequency and phase angle are respectively                    |
|                                                                      | a.141.42V, 314.16 Hz, 90 degrees                              |
| 133. Two currents $I_1 = 10 \angle 50$ and $I_2 = 5 \angle -100$ A   | b. 100V, 50 Hz, -90 degrees                                   |
| flow in single phase AC circuit. Then I <sub>1</sub> /I <sub>2</sub> | c. 87.92V, 56 Hz, 90 degrees                                  |
| =                                                                    | d. 200V, 50 Hz, -90 degrees                                   |
| a. 5.5596+ j4.924 A                                                  | ans:b                                                         |
| b. 2∠150 A                                                           |                                                               |
| c. 7.296+ j12.58 A                                                   | 139. When two sinusoidal waves are 90 degrees                 |
| d. None of the above                                                 | out of phase, then                                            |
| ans:b                                                                | a. both have their peak values at the same time               |
|                                                                      | b. both have their minimum values at the same                 |
| 134. The square of a j operator                                      | time                                                          |
| a. can never be negative                                             | c. one has its peak value, other has zero value               |
| b. can never be positive                                             | d. none of these                                              |
| c. could be either positive or negative                              | ans:c                                                         |
| d. is equal to j                                                     |                                                               |
| ans:b                                                                | 140. The direction of current in an AC circuit is             |
|                                                                      |                                                               |
| 135. A complex number                                                | a. always in one direction                                    |
| a. is the same as imaginary number                                   | b. varying time to time periodically                          |
| b. has real and imaginary part                                       | c. unpredictable                                              |
| c. is negative number                                                | d. from positive to negative                                  |
| d. is merely a technical term                                        | ans:b                                                         |
| ans:b                                                                |                                                               |
|                                                                      | 141. Consider the sinusoidal waves: A sin                     |
| 136. The sum of (3+j6) and (-3-j6) is                                | ( $\omega t$ +30) and B cos( $\omega t$ -60). The phase angle |
| a.0+j0                                                               | relationship between two waves is:                            |
| b.6+j12                                                              | a. B wave lags A wave by 90 degrees                           |
| c6-j12                                                               | b. B wave lags A wave by 60 degrees                           |
| d. 0-j12                                                             | c. B wave lags A wave by 30 degrees                           |
| ans:a                                                                | d. B wave and A wave are in phase                             |
|                                                                      | ans:d                                                         |
| 137. The product of (-4-j7) and (6-j2) is                            |                                                               |
| a24+j14                                                              |                                                               |
|                                                                      |                                                               |

| 142. When a phasor is multiplied by j and –j, it is                    | 147. In the complex number 4+j7, 7 is called the   |
|------------------------------------------------------------------------|----------------------------------------------------|
| rotated through degrees in the                                         | component                                          |
| anticlockwise direction respectively.                                  | a. real                                            |
| a.90, 270                                                              | b. imaginary                                       |
| b.90, 90                                                               | c. in-phase                                        |
| c.90, 180                                                              | d. none of the above`                              |
| d.270, 90                                                              | ans:d                                              |
| ans:a                                                                  |                                                    |
|                                                                        | 148. The reciprocal of a complex number is         |
| 143. If $e_1 = 100 \sin 2\pi f$ and $e_2 = 100 \sin (2\pi f - \Phi)$ , | a                                                  |
| then                                                                   | a. complex number                                  |
| a. e <sub>1</sub> lags e <sub>2</sub> by Φ                             | b. real component only                             |
| b. $e_1$ leads $e_2$ by $\Phi$                                         | c. quadrature component only                       |
| c. $e_2$ lags $e_1$ by $\Phi$                                          | d. none of above                                   |
| d. none of the above                                                   | ans:a                                              |
| ans:c                                                                  |                                                    |
|                                                                        | 149. If two complex numbers are equal,             |
| 144.The phase difference between two                                   | then                                               |
| waveforms can be compared when they                                    | a. only their magnitudes will be equal             |
| a. have the same frequency                                             | b. only their angles will be equal                 |
| b. have the same peak value                                            | c. their in phase and quadrature components        |
| c. have the same effective value                                       | will be separately equal                           |
| d. are sinusoidal                                                      | d.none of above                                    |
| ans:a                                                                  | ans:c                                              |
| 145. If two sinusoids of the same frequency but                        | 150. A phasor 2   180 can be expressed as          |
| of different amplitude and phase difference are                        | a.j2                                               |
| added, the resultant is a                                              | bj2                                                |
| a. sinusoid of same frequency                                          | c2                                                 |
| b. sinusoid of double the original frequency                           | d.2                                                |
| c. sinusoid of half the original frequency                             | ans:c                                              |
| d. non-sinusoid                                                        | unsie                                              |
| ans:a                                                                  | 151. A current of (3+j4) A is flowing through a    |
|                                                                        | circuit. The magnitude of current is               |
| 146. If the phasor is multiplied by j, then                            | a. 7 A                                             |
| a. only its magnitude changes                                          | b. 5 A                                             |
| b. only its direction changes                                          | c. 1 A                                             |
| c. both magnitude and direction change                                 | d. 1.33 A                                          |
| d. none of the above                                                   | ans:b                                              |
| ans:b                                                                  | ans.v                                              |
| นแรง                                                                   | 152. The voltage applied in a circuit is given by  |
|                                                                        | 100 \( \( \text{60 volts.} \) It can be written as |
|                                                                        | TOOL OO VOICS. IT CAIL DE WITTEEL AS               |

| a. 100 ∟ -60                                                             | b.50                                                                  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|
| b.100 \( \subseteq 240                                                   | c.60                                                                  |
| c. 100 ∟ -300                                                            | d.105                                                                 |
| d. none of the above                                                     | ans:d                                                                 |
| ans:c                                                                    |                                                                       |
|                                                                          | 158. A phasor is                                                      |
| 153. The conjugate of -4+j3 is                                           | a. a line which represents the magnitude and                          |
| a. 4-j3                                                                  | phase of an alternating quantity                                      |
| b4-j3                                                                    | b. a line which represents the magnitude and                          |
| c.4+j3                                                                   | direction of an alternating quantity                                  |
| d. none of the above                                                     | c. a colored tag or band for distinction between                      |
| ans:b                                                                    | different phases of a 3 phase supply                                  |
|                                                                          | d. an instrument used for measuring phases of                         |
| 154. The difference of two conjugate number                              | an unbalanced 3 phase load                                            |
| results in                                                               | ans:b                                                                 |
| a. a complex number                                                      |                                                                       |
| b. in-phase component only                                               | 159. A sinusoidal voltage v₁ leads another                            |
| c. quadrature component only                                             | sinusoidal voltagev <sub>2</sub> by 180 degrees. Then                 |
| d. none of the above                                                     | a. voltage v <sub>2</sub> leads voltage v <sub>1</sub> by 180 degrees |
| ans:c                                                                    | b. both voltage have their zero values at the                         |
| ans.c                                                                    | same time                                                             |
| 155. The reciprocal of j is                                              | c. both voltage have their peak values at the                         |
|                                                                          | same time                                                             |
| a.j                                                                      | d. all of above                                                       |
| bj                                                                       |                                                                       |
| c.jxj                                                                    | ans:d                                                                 |
| d.none of the above                                                      | 100 If A 101 AF and B 51 AF then the                                  |
| ans:b                                                                    | 160. If A = $10 \bot 45$ and B = $5 \bot 15$ , then the               |
| 456 7                                                                    | value of A/B will be                                                  |
| 156. Two waves of same frequency have                                    | a.50 ∟ 60                                                             |
| opposite phase when the phase angle between                              | b.2 ∟ 60                                                              |
| them is degrees                                                          | c. 2 ∟ -30                                                            |
| a.360                                                                    | d.2∟30                                                                |
| b.180                                                                    | ans:d                                                                 |
| c.90                                                                     |                                                                       |
| d.0                                                                      | 161. The length of a phasor in a phasor diagram                       |
| ans: b                                                                   | normally represents the value of the                                  |
|                                                                          | alternating quantity                                                  |
| 157. Two sinusoidal currents are given by $i_1 =$                        | a. rms or effective                                                   |
| 100sin ( $\omega t + \pi/3$ ) and $i_2 = 150sin(\omega t - \pi/4)$ . The | b. average                                                            |
| phase difference between them is                                         | c. peak                                                               |
| degrees                                                                  | d. none of these                                                      |
| a.15                                                                     | ans:a                                                                 |
|                                                                          |                                                                       |

- 162. The two quantities are said to be in phase with each other when
- a. the phase difference between two quantities is zero degree or radian
- b. each of them pass through zero values at the same instant and rise in the same direction
- c. each of them pass through zero values at the same instant but rises in the opposite directions d. either (a) or (b) ans:d
- 163. The phase difference between the two waveforms can be compared only when they
- a. have the same frequency
- b. have the same peak value
- c. have the same effective value
- d. are sinusoidal ans:a
- 164. The phasor diagram for alternating quantities can be drawn if they have ....... waves
- a. rectangular
- b. sinusoidal
- c. triangular
- d. any of these
- ans:b

#### **UNIT NO: 3 SINGLE PHASE AC CIRCUIT (PART A)**

- 1. The power factor at resonance in R-L-C series circuit is
- a. Zero
- b. 0.08 lagging
- c. 0.8 leading
- d. Unity
- Answer: d
- 2. In a R-L-C circuit
- a. Power is consumed in resistance and is equal to IR
- b. Exchange of power takes place between inductor and supply line
- c. Exchange of power takes place between capacitor and supply line
- d. All above are correct

Answer: d

- 3. In an AC. circuit, a low value of kVAR compared with kW indicates
- a. Low efficiency
- b. High power factor
- c. Unity power factor
- d. Maximum load current

Answer: b

- 4. The power factor of a D.C. circuit is always
- a. Less than unity
- b. Unity
- c. Greater than unity
- d. Zero

Answer: b

- 5. Which triangles are used in series ac circuit?
- a. Voltage triangle
- b. Impedance triangle
- c. power triangle
- d. all of the above

Answer: d

- 6. The product of apparent power and cosine of the phase angle between circuit voltage and current is a. True power
- b. Reactive power
- c. Volt-amperes
- d. Instantaneous power

Answer: a

- 7. In a series resonant circuit, the impedance of the circuit is
- a. Minimum
- b. Maximum

| d. None of the above                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer: a                                                                                                                                                                                                                                                                                                                                                                        |
| 8. In a circuit containing R, L and C, power loss can take place in a. C only b. L only c. R only d. All above                                                                                                                                                                                                                                                                   |
| Answer: c                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>9. Which of the following refers to a parallel circuit?</li> <li>a. The current through each element is same</li> <li>b. The voltage across element is in proportion to it's resistance value</li> <li>c. The equivalent resistance is greater than any one of the resistors</li> <li>d. The current through any one element is less than the source current</li> </ul> |
| Answer: d                                                                                                                                                                                                                                                                                                                                                                        |
| 10. A sine wave has a frequency of 50 Hz. Its angular frequency is radian/second. a. 100 $\pi$ b. 50 jt c. 25 JT d. 5 $\pi$                                                                                                                                                                                                                                                      |
| Answer: a                                                                                                                                                                                                                                                                                                                                                                        |
| 11. The apparent power drawn by an A.C. circuit is 10 kVA and active power is 8 kW. The reactive power in the circuit is a. 4 kVAR b. 6 kVAR c. 8 kVAR d. 16 kVAR                                                                                                                                                                                                                |
| Answer: b                                                                                                                                                                                                                                                                                                                                                                        |
| <ul><li>12. The net power in a series R-C circuit is</li><li>a. Zero</li><li>b. Positive</li><li>c. Negative</li><li>d. None of these</li></ul>                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                  |
| Answer: b                                                                                                                                                                                                                                                                                                                                                                        |
| Answer: b  13. The two alternating quantities could be added by constructing a. Squares b. Parallelograms c. Rhombus d. Trapeziums                                                                                                                                                                                                                                               |

c. Zero

| 14. The power factor of a series RL ac circuit is given by                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| a. $X_L/R$                                                                                                                                      |
| b. $R/X_L$                                                                                                                                      |
| c. R/Z                                                                                                                                          |
| d. Z/R                                                                                                                                          |
| Answer: c                                                                                                                                       |
| 15. The low power factor of an ac circuit means that                                                                                            |
| a. it causes less voltage drop in the line                                                                                                      |
| b. it draws more active power                                                                                                                   |
| c.it draws less line current                                                                                                                    |
| d. it draws more reactive power                                                                                                                 |
| Answer: d                                                                                                                                       |
| 16. The impedance of circuit is given by $15.5 \angle -30 \Omega$ . It means that the circuit is                                                |
| a. capacitive                                                                                                                                   |
| b. inductive                                                                                                                                    |
| c. purely resistive                                                                                                                             |
| d. none of the above                                                                                                                            |
| Answer: c                                                                                                                                       |
| 17. In RLC series circuit, the inductive reactance is 10 $\Omega$ and capacitive reactance is 15 $\Omega$ . The total reactance of the          |
| circuit is                                                                                                                                      |
| a. $25 \Omega$                                                                                                                                  |
| b. 18.03 Ω                                                                                                                                      |
| c. 5 Ω                                                                                                                                          |
| d. 1.5 Ω                                                                                                                                        |
| Answer: c                                                                                                                                       |
| 18. In series RL circuit, $R = 5 \Omega$ , $X_L = 10 \Omega$ and $X_C = 15 \Omega$ . If this circuit is connected to a voltage source $v = 100$ |
| $\sin (314t + 30)$ V, the rms value of the current will be                                                                                      |
| a. 14.14 A                                                                                                                                      |
| b. 10 A                                                                                                                                         |
| c. 5 A                                                                                                                                          |
| d. 3.33 A                                                                                                                                       |
| Answer: b                                                                                                                                       |
| 19. An alternating voltage of 80+j60 V is applied to a circuit and the current flowing is 4-j2 A. Find impedance of                             |
| circuit.                                                                                                                                        |
| a. $22.37~\Omega$                                                                                                                               |
| b. $23.27~\Omega$                                                                                                                               |
| c. 21.88 Ω                                                                                                                                      |
| d. $27.22~\Omega$                                                                                                                               |
| Answer: a                                                                                                                                       |
|                                                                                                                                                 |
|                                                                                                                                                 |

| 20. An alternating voltage of 80+j60 V is applied to a circuit and the current flowing is 4-j2 A. Find power factor of circuit.                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. 0.5 lag                                                                                                                                                                                                                                                                                 |
| b. 0.447 lead                                                                                                                                                                                                                                                                              |
| c. 0.447 lag                                                                                                                                                                                                                                                                               |
| d. none of the above                                                                                                                                                                                                                                                                       |
| Answer: c                                                                                                                                                                                                                                                                                  |
| 21. The voltage applied to a circuit is $e = 100 \sin(\omega t + 30)$ and the current flowing in the circuit is $i = 15 \sin(\omega t + 60)$ . Determine impedance of the circuit.                                                                                                         |
| a. $6.67~\Omega$                                                                                                                                                                                                                                                                           |
| b. 5.57 Ω                                                                                                                                                                                                                                                                                  |
| c. $7.67 \Omega$                                                                                                                                                                                                                                                                           |
| d. 1.67 $\Omega$                                                                                                                                                                                                                                                                           |
| Answer: a                                                                                                                                                                                                                                                                                  |
| 22. The voltage applied to a circuit is $e = 100 \sin(\omega t + 30)$ and the current flowing in the circuit is $i = 15 \sin(\omega t + 60)$ . Determine resistance of the circuit.                                                                                                        |
| a. $6.67 \Omega$                                                                                                                                                                                                                                                                           |
| b. 5.77 Ω                                                                                                                                                                                                                                                                                  |
| c. $7.67 \Omega$                                                                                                                                                                                                                                                                           |
| d. 1.67 $\Omega$                                                                                                                                                                                                                                                                           |
| Answer: b                                                                                                                                                                                                                                                                                  |
| 23. A resistor of 20 $\Omega$ , inductor of 0.005 H and capacitor of 50 $\mu$ F are connected in series. A supply voltage 230 V, 50 Hz is connected across the series combination. Calculate inductive reactance. a. 16.67 $\Omega$ b. 15.71 $\Omega$                                      |
| c. 17.67 Ω                                                                                                                                                                                                                                                                                 |
| d. 14.67 $\Omega$                                                                                                                                                                                                                                                                          |
| Answer: b                                                                                                                                                                                                                                                                                  |
| 24. A resistor of 20 $\Omega$ , inductor of 0.005 H and capacitor of 50 $\mu$ F are connected in series. A supply voltage 230 V, 50 Hz is connected across the series combination. Calculate capacitive reactance. a. 53.67 $\Omega$ b. 55.71 $\Omega$ c. 63.67 $\Omega$ d. 57.67 $\Omega$ |
| Answer: c                                                                                                                                                                                                                                                                                  |
| 25. Two impedances $Z_1$ = $40 \angle 30$ and $Z_2$ = $30 \angle 60$ are connected in series across a single phase 230 V, 50 Hz supply. Calculate the current drawn a. 4.3 A b. 2.3 A c. 3.4 A d. 5.0 A                                                                                    |
|                                                                                                                                                                                                                                                                                            |

| Answer: c                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26. A coil having a impedance of $50.39 \angle 7.16$ is connected in parallel with capacitor having impedance of $127.32 \angle -90$ . If supply voltage is 200 V, single phase, 50 Hz. Calculate current in the coil. a. $4.47 \angle 7.16$ A b. $5.57 \angle 8.16$ A c. $4.97 \angle 90$ A d. $3.97 \angle -7.16$ A |
| Answer: d                                                                                                                                                                                                                                                                                                             |
| 26. A coil having a impedance of $50.39 \angle 7.16$ is connected in parallel with capacitor having impedance of $127.32 \angle -90$ . If supply voltage is 200 V, single phase, 50 Hz. Calculate current in the capactor. a. $4.47 \angle 90$ A b. $5.57 \angle 8.17$ A c. $4.97 \angle 90$ A d. $1.57 \angle 90$ A  |
| Answer: d                                                                                                                                                                                                                                                                                                             |
| 27. An impedance of (7+j5) $\Omega$ is connected in parallel with another impedance of (10-j8) $\Omega$ across a 230 V, 50 Hz supply. Calculate admittance of the circuit. a. $0.16 \angle -7.04$ mho b. $0.16 \angle 7.04$ mho c. $-0.16 \angle 7.04$ mho d. none of the above                                       |
| Answer: b                                                                                                                                                                                                                                                                                                             |
| 28. Resonance occurs in series RLC circuit if following condition is satisfied. a. $XL>XC$ b. $XL c. XL=XC d. XL\neq XC$                                                                                                                                                                                              |
| Answer: c                                                                                                                                                                                                                                                                                                             |
| 29. Current of circuit at resonance is a. Maximum b. Minimum c. Unity d. zero                                                                                                                                                                                                                                         |
| Answer: a                                                                                                                                                                                                                                                                                                             |
| 30. A series RLC circuit has following parameter values: R = 10 $\Omega$ , L = 0.01 H and C = 100 $\mu$ F. Calculate resonant frequency. a. 159.15 Hz b. 169.15 Hz a. 179.15 Hz a. 150.15 Hz                                                                                                                          |

Answer: a

## Unit IV Part (a) :SINGLE PHASE TRANSFORMER

| 1. A transformer is used to                   | d. Tapped                                        |
|-----------------------------------------------|--------------------------------------------------|
| a. change ac voltage to dc voltage            | ans:b                                            |
| b. change dc voltage to ac voltage            |                                                  |
| c. step up or step down dc voltages           | 6. If supply frequency of a transformer          |
| d. step up or step down ac voltages           | increases, the secondary output voltage of the   |
| ans: d                                        | transformer                                      |
|                                               | a. Decreases                                     |
| 2. The two windings of a transformer          | b. increases                                     |
| are                                           | c. remains same                                  |
| a. conductively linked                        | d. decreases slightly                            |
| b. inductively linked                         | ans:b                                            |
| c. not linked at all                          | 3.13.2                                           |
| d. electrically linked                        | 7. The horizontal and vertical portions of       |
| ans: b                                        | transformer magnetic core are called             |
|                                               | as                                               |
| 3.The magnetically operated device that can   | a. Limb, yoke                                    |
| change values of voltage, current, and        | b. Yoke, limb                                    |
| impedance without changing frequency is       | c. Winding, Yoke                                 |
| the                                           | d. Winding, Limb                                 |
| a. Motor                                      | ans:b                                            |
| b. Generator                                  |                                                  |
| c. Transformer                                | 8. The principle of working of transformer is    |
| d. Transistor                                 | based on                                         |
| ans:c                                         | a. Static induction                              |
|                                               | b. Mutual induction                              |
| 4. The transformer winding across which the   | c. Dynamic induction                             |
| supply voltage applied is called the          | d. Self induction                                |
| winding.                                      | ans:b                                            |
| a. Primary                                    |                                                  |
| b. Secondary                                  | 9. Transformer is used to change values          |
| c. Tertiary                                   | of                                               |
| d. Tapped                                     | a. Frequency                                     |
| ans:a                                         | b. Voltage                                       |
|                                               | c. Power                                         |
| 5. The transformer winding which is connected | d. Power factor                                  |
| to the load is called the winding.            | ans:b                                            |
| a. Primary                                    |                                                  |
| b. Secondary                                  | 10. The path of the magnetic flux in transformer |
| c. Tertiary                                   | should have                                      |

| <ul><li>a. Low resistance</li><li>b. Low reluctance</li><li>c. High reluctance</li><li>d. High conductivity</li><li>ans:b</li></ul>                                                                                                                    | <ul><li>b. Toroid</li><li>c. H core</li><li>d. tape wound</li><li>ans:a</li></ul>                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11. Electrical power is transformed from one coil to other coil in transformer  a. Physically b. Electrically c. Magnetically d. Electromagnetically                                                                                                   | 16. The concentric cylindrical winding is used for a. Core type transformer b. Shell type transformer c. Berry type transformer d. None of these ans:a                                                                      |
| ans:d  12. A transformer operates a. Always at unity power factor b. At power factor depending on load c. Has its own power factor d. At power factor below particular value ans: b                                                                    | 17.The sandwich type winding is used for a. Core type transformer b. Berry type transformer c. Shell type transformer d. None of these ans:c                                                                                |
| 13. The laminations of transformer core are made up from a. Low carbon steel b. Silicon sheet steel c. Nickel alloy steel stamping d. Chrome sheet steel ans:b                                                                                         | <ul> <li>18. Silicon steel is used for transformer core</li> <li>a. To reduce hysteresis loss</li> <li>b. To reduce eddy current loss</li> <li>c. To reduce both losses</li> <li>d. None of these</li> <li>ans:a</li> </ul> |
| 14.The material used for construction of transformer core should havea. Low permeability & high hysteresis loss b. Low permeability & low hysteresis loss c. High permeability & high hysteresis loss d. high permeability & low hysteresis loss ans:d | 19. What is common in two windings of transformer? a. Electric current b. Magnetic circuit c. Winding wire guage d. None of these ans:b                                                                                     |
| 15. Most transformer cores are not made from a solid piece of metal. Instead, they are assembled from many thin sheets of metal. This type of construction is called                                                                                   | <ul> <li>20. The main function of transformer iron core is to</li> <li>a. Provide strength to the winding</li> <li>b. To decrease hysteresis loss</li> <li>c. Decrease the reluctance of magnetic path</li> </ul>           |

| d. Reduce eddy current loss                                                                                                                                                                          | d. Auto                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ans:c                                                                                                                                                                                                | ans:a                                                                                                                                                                                                                       |
| 21. The emf induced in the primary of a transformer a. is in phase with the flux b. lags behind the flux by 90 degree c. leads the flux by 90 degree d. is in phase opposition to that of flux ans:b | 26. Any transformer flux that does not follow the core and escapes into the surrounding air is called a. magnetizing flux b. coupling flux c. leakage flux d. reactance flux                                                |
| 22.The transformer turns ratio                                                                                                                                                                       | ans:c                                                                                                                                                                                                                       |
| determines  a. the ratio of primary and secondary voltages b. the ratio of primary and secondary currents c. The resistance on other side d. all of the above ans:a                                  | 27. A transformer that does not isolate the output from the input is called transformer a. Distribution b. step-up c. Auto d. Control                                                                                       |
| 23. Turns ratio of single phase transformer is                                                                                                                                                       | ans:c                                                                                                                                                                                                                       |
| given as<br>a. N2/N1<br>b. N1/N2<br>c. (N1xN2)/N1<br>d. (N1xN2)/N2<br>ans:b                                                                                                                          | <ul> <li>28. Ideal transformer assumptions do not include</li> <li>a. Zero reactance of the winding</li> <li>b. Zero resistance of the winding</li> <li>c. No leakage flux</li> <li>d. No saturation of the core</li> </ul> |
| 24. A transformer in which the secondary voltage is more than the primary voltage is                                                                                                                 | ans:a                                                                                                                                                                                                                       |
| called a transformer a. step-down b. step-up c. Isolation d. Auto ans:b                                                                                                                              | 29.The efficiency of the transformer is normally is normally in the range of a. 50 to 70% b. 60 to 75 % c. 80 to 90 % d. 90 to 98% ans:d                                                                                    |
| 25. A transformer in which the primary voltage                                                                                                                                                       | 20. The resistance of law valtage side of                                                                                                                                                                                   |
| is more than the secondary voltage is called a transformer. a. step-down b. step-up c. Isolation                                                                                                     | <ul><li>30. The resistance of low voltage side of transformer</li><li>a. Is equal to resistance of its high voltage side</li><li>b. Is more than its resistance on high voltage side</li></ul>                              |

| c. Is less than its resistance on high voltage side |                                               |
|-----------------------------------------------------|-----------------------------------------------|
| d.0                                                 | 36. EMF equation for single phase transformer |
| ans:c                                               | is                                            |
|                                                     | а. E= 4.44 Ф <sub>m</sub> A <i>f</i> N        |
| 31. Eddy current losses in transformer core are     | b. E= 4.44 B <sub>m</sub> A N                 |
| reduced by                                          | c. E= 4.44 B <sub>m</sub> fN                  |
| a. Increasing the thickness of laminations          | d. E= 4.44 Φ <sub>m</sub> <i>f</i> N          |
| b. Decreasing the thickness of laminations          | ans:d                                         |
| c. Decreasing the air gap in magnetic circuit       |                                               |
| d. Using wire of higher guage for winding           | 37. Transformation ratio(K) of transformer    |
| ans:b                                               | is                                            |
| u                                                   | a. N2/N1                                      |
| 32. A good transformer oil should be absolutely     | b. E1/E2                                      |
| free from                                           | c. I2/I1                                      |
| a. Sulpher                                          | d. V1/V2                                      |
| b. Alkalies                                         | ans:a                                         |
| c. Moisture                                         | 411514                                        |
| d. All of the above                                 | 38. For Isolation transformer the             |
| ans:c                                               | transformation ratio(K) is                    |
| 4.15.15                                             | a.0                                           |
| 33. Single phase core type transformer              | b. Greater than 1                             |
| has                                                 | c. Less than 1                                |
| a. One magnetic path                                | d.1                                           |
| b. Two magnetic paths                               | ans:d                                         |
| c. No magnetic path                                 | 411314                                        |
| d. None of these                                    | 39. In step up transformer the transformation |
| ans: a                                              | ratio (K) is                                  |
| V. 10. L                                            | a. Greater than 1                             |
| 34. Single phase shell type transformer             | b.1                                           |
| has                                                 | c. Less than 1                                |
| a. One magnetic path                                | d.0                                           |
| b. Two magnetic paths                               | ans: a                                        |
| c. No magnetic path                                 |                                               |
| d. None of these                                    | 40. In step down transformer the              |
| ans:b                                               | transformation ratio (K) is                   |
|                                                     | a. Greater than 1                             |
| 35. Natural cooling is better in                    | b.1                                           |
| a. Core type transformer                            | c. Less than 1                                |
| b. Shell Type transformer                           | d.0                                           |
| c. Both A& B                                        | ans:c                                         |
| d. Berry type transformer                           |                                               |
| ans:a                                               |                                               |

| 41. The primary and secondary voltages in     | 46. Transformer oil is used in transformer to     |
|-----------------------------------------------|---------------------------------------------------|
| transformer are                               | provide                                           |
| a. Always in Phase                            | a. Cooling and insulation                         |
| b. 180° out of phase                          | b. Cooling and lubrication                        |
| c. 90° out of phase                           | c. Insulation and lubrication                     |
| d. $30^{\circ}$ or $60^{\circ}$ out of phase  | d. Insulation, cooling and lubrication            |
| ans:b                                         | ans:a                                             |
| 42. The induced emf in transformer secondary  | 47. What is the typical use of                    |
| depends on                                    | autotransformer?                                  |
| a. Maximum flux in core                       | a. Toy transformer                                |
| b. Frequency                                  | b. Control transformer                            |
| c. No of turns on secondary                   | c. Variable transformer                           |
| d. all of the above                           | d. Isolating transformer                          |
| ans:d                                         | ans:c                                             |
| 43. Transformer rating usually expressed      | 48. In any transformer the voltage per turn in    |
| in                                            | primary and secondary remains                     |
| a.kW                                          | a. Always different                               |
| b.kVA                                         | b. Always the same                                |
| c. kV                                         | c. Always in ratio of K                           |
| d. kWh                                        | d. Sometimes same                                 |
| ans:b                                         | ans:b                                             |
| 44. In a transformer if secondary turns are   | 49. Full load copper loss in a transformer is 400 |
| doubled, at the same time primary voltage is  | Watt. At half load, copper losses will            |
| reduced by half, the secondary voltage        | be                                                |
| will                                          | a. 400 Watt                                       |
| a. Be halved                                  | b. 100 Watt                                       |
| b. Not change                                 | c. 200 Watt                                       |
| c. Be four times                              | d. 50 Watt                                        |
| d. Be reduced to quarter                      | ans:b                                             |
| ans:b                                         | 50. A transformer is working with its maximum     |
| 45. The no load current in terms of full load | efficiency. If the iron losses are 500 W, the     |
| current is usually                            | copper loss will                                  |
| a. 1 to 3%                                    | a. 300 W                                          |
| b. 3 to 9 %                                   | b. 350 W                                          |
| c. 9 to 12%                                   | c. 250 W                                          |
| d. 12 to 20%                                  | d. 500 W                                          |
| ans:a                                         | ans:d                                             |

| 51. If we increase the flux density in case                                                    |                                                  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------|
| transformer                                                                                    | 55. For 100 kVA, 11000V/110V single phase        |
| a. The size of transformer will reduce                                                         | transformer, the primary full load current       |
| b. The distortion in transformer will reduce                                                   | is                                               |
| c. Hysteresis and eddy current losses will reduce                                              | a. 909.09 Amp                                    |
| d. None of these will be true                                                                  | b. 90.90 Amp                                     |
| ans:a                                                                                          | c. 9.09 Amp                                      |
|                                                                                                | d. 9090.9 Amp                                    |
| 52. The direct loading test is performed on                                                    | ans:c                                            |
| transformer to find its                                                                        |                                                  |
| a. Regulation                                                                                  | 56. For 100 kVA, 11000V/110V single phase        |
| b. Efficiency                                                                                  | transformer, the secondary full load current     |
| c. Both                                                                                        | is                                               |
| d. None of these                                                                               | a. 90.90 Amp                                     |
| ans:c                                                                                          | b. 9090.9 Amp                                    |
|                                                                                                | c. 909.0 Amp                                     |
| 53. The regulation of transformer is calculated                                                | d. 9.09 Amp                                      |
| as                                                                                             | ans:c                                            |
|                                                                                                |                                                  |
| a. No load Voltage–Full-load voltage No load voltage                                           | 57. The disadvantage of auto transformer         |
| No load voltage                                                                                | is                                               |
| Full load Voltage-No load voltage                                                              | a. No separation between primary & secondary     |
| b. $\frac{Full\ load\ Voltage-No\ load\ voltage}{No\ load\ voltage}$                           | b. Size is more than normal transformer for      |
|                                                                                                | same rating                                      |
| C. $\frac{\textit{No load Voltage-Ful load volt}}{\textit{Full load voltage}}$                 | c. More costlier than normal transformer         |
| Full load voltage                                                                              | d. All                                           |
| Full load Voltage-No load voltage                                                              | ans:d                                            |
| $d. \frac{\mathit{Full load Voltage-No\ load\ voltage}}{\mathit{Full load\ voltage}}$          |                                                  |
| ans:a                                                                                          | 58. In a transformer the voltage regulation will |
|                                                                                                | be near to zero when it operates                 |
| 54. The efficiency of single phase transformer is                                              | at                                               |
| calculated as                                                                                  | a. unity p.f.                                    |
| a. $\frac{V_2I_2 \cos \emptyset}{V_2I_2 \cos \emptyset + iro \ loss + coppe \ loss}$           | b. leading p.f.                                  |
| $V_2I_2 \cos \psi + iro \ loss + coppe \ loss$                                                 | c. lagging p.f.                                  |
| . V <sub>1</sub> I <sub>1</sub> CosØ                                                           | d. full load.                                    |
| b. $\frac{V_1I_1 \cos\emptyset}{V_2I_2 \cos\emptyset + iron \ loss + copper \ loss}$           | ans:b                                            |
| V-1-COSØ                                                                                       |                                                  |
| $\text{C.} \frac{V_1 I_1 Cos \emptyset}{V_1 I_1 Cos \emptyset + iron \ loss + coppe \ \ loss}$ | 59. A transformer steps up voltage by a factor   |
|                                                                                                | of 100. The ratio of current in the primary to   |
| d. $\frac{V_2I_2Cos\emptyset}{V_1I_1Cos\emptyset+iro\ loss+copper\ loss}$                      | that in secondary                                |
|                                                                                                | a.1                                              |
| ans:a                                                                                          | b.100                                            |

| c.0.01<br>d.0.1                                | ans:a                                                     |
|------------------------------------------------|-----------------------------------------------------------|
| ans:b                                          | 65. Eddy current loss depends on                          |
| 60. An ideal transformer does not              | a. both current and frequency                             |
| change                                         | b. current alone                                          |
| a. Voltage                                     | c. frequency alone                                        |
| b. Power                                       | d. none of these                                          |
| c. current                                     | ans:a                                                     |
| d. None of these                               |                                                           |
| ans:b                                          | 66.The flux involved in EMF equation of a                 |
|                                                | transformer has                                           |
| 61. The flux in transformer core               | a. RMS Value                                              |
| a. increases with load                         | b. Average Value                                          |
| b. decreases with load                         | c. Total Value                                            |
| c. remains constant irrespective of load       | d. maximum Value                                          |
| d. none of these                               | ans:d                                                     |
| ans:c                                          |                                                           |
|                                                | 67. A transformer has maximum efficiency at $\frac{3}{4}$ |
| 62. Efficiency of transformer is maximum       | of full load. The ratio of its iron loss and full load    |
| when                                           | copper loss is                                            |
| a. transformer is unloaded                     | a. 16/9                                                   |
| b. copper losses is equal to iron losses       | b. 4/3                                                    |
| c. eddy current losses are equal to hysteresis | c. 3/4                                                    |
| losses                                         | d. 9/16                                                   |
| d. it is maximally loaded                      | ans:d                                                     |
| ans:b                                          |                                                           |
|                                                | 68. If primary of the transformer is connected            |
| 63. If the supply frequency in transformer is  | to dc supply, then                                        |
| doubled, then                                  | a. Primary draws small current                            |
| a. hysteresis loss also doubles                | b. primary leakage reactance is increased                 |
| b. eddy current loss also doubles              | c. core losses are increased                              |
| c. iron losses doubles                         | d. primary may burn out                                   |
| d. copper losses doubles                       | ans:d                                                     |
| ans:a                                          |                                                           |
| 64. Hysteresis loss in transformer depends     | 69. For an ideal transformer the windings should have     |
| on                                             | a. maximum resistance on primary side and                 |
| a. both voltage and frequency                  | least resistance on secondary side                        |
| b. voltage alone                               | b. least resistance on primary side ans                   |
| c. frequency alone                             | maximum resistance on secondary side                      |
| d. none of these                               |                                                           |

| c. equal resistance on primary and secondary      | 74. In a given transformer for a given applied |
|---------------------------------------------------|------------------------------------------------|
| side                                              | voltage, which losses remain constant          |
| d. no ohmic resistance on either side             | irrespective of change in load                 |
| ans:d                                             | a. Friction and windage loss                   |
|                                                   | b. copper loss                                 |
| 70. The full load copper and iron loss of a       | c. hysteresis and eddy current loss            |
| transformer are 6400 W and 5000 W                 | d. none of these                               |
| respectively. The copper loss and iron loss at    | ans:c                                          |
| half load will be respectively                    |                                                |
| a. 3200 W and 2500 W                              | 75. Main advantage to use autotransformer      |
| b. 3200 W and 5200 W                              | over two winding transformer                   |
| c. 1600 W and 1250 W                              | a. Hysteresis losses are reduced               |
| d. 1600 W and 5000 W                              | b. savings in winding material                 |
| ans:d                                             | c. copper losses are negligible                |
|                                                   | d. Eddy current losses are totally eliminated  |
| 71. A transformer does not raise or lower the     | ans:b                                          |
| voltage of DC supply because                      |                                                |
| a. there is no need to change the DC voltage      | 76. An ideal transformer is one which has      |
| b. DC circuit has more losses                     |                                                |
| c. Faradays law of Electromagnetic Induction      | a. no losses and magnetic leakage              |
| are not valid since the rate of change of flux is | b. interleaved primary and secondary winding   |
| zero                                              | c. a common core for its primary and secondary |
| d. none of these                                  | d. core of stainless steel and winding of pure |
| ans:c                                             | copper material                                |
| ans.c                                             | • •                                            |
| 72 Primary winding of a transformer               | ans:a                                          |
| 72. Primary winding of a transformer              | 77 In a muchical transferred core leader       |
|                                                   | 77. In a practical transformer core losses     |
| a. is always low voltage winding                  | remains constant from no load to full load     |
| b. is always high voltage winding                 | because                                        |
| c. could either be a low or high voltage winding  | a. value of transformation ratio remains       |
| d. none of these                                  | constant                                       |
| ans:c                                             | b. permeability of transformer core remains    |
|                                                   | constant                                       |
| 73. Which winding of a transformer has more       | c. core flux remains practically constant      |
| number of turns                                   | d. primary and secondary voltage remains       |
| a. Low voltage winding                            | constant                                       |
| b. High voltage winding                           | ans.c                                          |
| c. Primary winding                                |                                                |
| d. secondary winding                              | 78. The transformer laminations are insulated  |
| ans:b                                             | from each other by                             |
|                                                   | a. mica strip                                  |
|                                                   | b. thin coat of varnish                        |

| <ul><li>c. paper</li><li>d. any one of these</li><li>ans:b</li><li>79. In transformer resistance between primary</li></ul> | <ul><li>a. high eddy current losses</li><li>b. reduced magnetic leakage</li><li>c. negligible hysteresis loss</li><li>d.none of these</li><li>ans:b</li></ul> |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and secondary should be                                                                                                    |                                                                                                                                                               |
| a. zero                                                                                                                    | 84. Deduction in core losses and increase in                                                                                                                  |
| b. 10 ohm                                                                                                                  | permeability are obtained with transformer                                                                                                                    |
| c. 1000 ohm                                                                                                                | employing                                                                                                                                                     |
| d. infinity                                                                                                                | a. core built up of laminations of cold rolled                                                                                                                |
| ans:d                                                                                                                      | grain oriented steel                                                                                                                                          |
|                                                                                                                            | b. core built up of laminations of hot rolled steel                                                                                                           |
| 80. A good voltage regulation of transformer                                                                               | c. either a or b                                                                                                                                              |
| means                                                                                                                      | d. none of these                                                                                                                                              |
| a. output voltage fluctuations from no load to                                                                             | ans: c                                                                                                                                                        |
| full load is least                                                                                                         |                                                                                                                                                               |
| b. output voltage fluctuations with power factor                                                                           | 85. Losses which occur in rotating electric                                                                                                                   |
| is least                                                                                                                   | machine and do not occur in transformers                                                                                                                      |
| c. difference between primary and secondary                                                                                | are                                                                                                                                                           |
| voltage is least                                                                                                           | a. friction and windage losses                                                                                                                                |
| d. difference between primary and secondary                                                                                | b. magnetic losses                                                                                                                                            |
| voltage is maximum                                                                                                         | c. hysteresis and eddy current losses                                                                                                                         |
| ans:a                                                                                                                      | d. copper losses                                                                                                                                              |
|                                                                                                                            | ans:a                                                                                                                                                         |
| 81. Negative voltage regulation is indicative that                                                                         |                                                                                                                                                               |
| the load is                                                                                                                | 86. Which of the following loss in a transformer                                                                                                              |
| a. Capacitive only                                                                                                         | is zero even at full load                                                                                                                                     |
| b. inductive only                                                                                                          | a. core loss                                                                                                                                                  |
| c. inductive or resistive                                                                                                  | b. friction loss                                                                                                                                              |
| d. none of these                                                                                                           | c. eddy current loss                                                                                                                                          |
| ans:a                                                                                                                      | d. Hysteresis loss                                                                                                                                            |
|                                                                                                                            | ans:b                                                                                                                                                         |
| 82. The size of the transformer core depend                                                                                |                                                                                                                                                               |
| on                                                                                                                         | 87. The noise produced by transformer is                                                                                                                      |
| a. frequency                                                                                                               | termed as                                                                                                                                                     |
| b. area of the core                                                                                                        | a. zoom                                                                                                                                                       |
| c. flux density of the core material                                                                                       | b.hum                                                                                                                                                         |
| d. (a) and (b) both                                                                                                        | c. ringing                                                                                                                                                    |
| ans:d                                                                                                                      | d. buzz                                                                                                                                                       |
| 92 A shall tune transformer has                                                                                            | ans:b                                                                                                                                                         |
| 83. A shell type transformer has                                                                                           |                                                                                                                                                               |

| 88. Part of the transformer which is most          | c. it has become customary                                                         |
|----------------------------------------------------|------------------------------------------------------------------------------------|
| subject to damage from overheating                 | d. total transformer loss depends on VA                                            |
| is                                                 | ans:b                                                                              |
| a. iron core                                       |                                                                                    |
| b. copper winding                                  | 93. Increase in secondary current of                                               |
| c. insulation of the winding                       | transformer brings about increase in primary                                       |
| d. transformer tank                                | current . This is possible because                                                 |
| ans:c                                              | <ul> <li>a. primary and secondary windings are capacitively coupled.</li> </ul>    |
| 89.In a step down transformer, there is a          | b. primary and secondary windings are                                              |
| change of 15A in the load current. This results in | inductively coupled                                                                |
| change of supply current of                        | c. primary and secondary windings are                                              |
| a. less than 15 A                                  | conductively coupled                                                               |
| b. more than 15 A                                  | d. none of these                                                                   |
| c.15A                                              | ans:b                                                                              |
| d. none of these                                   |                                                                                    |
| ans:a                                              | 94. Transformer for constant voltage application is considered good if its voltage |
| 90. As per the name plate of transformer, the      | regulation is                                                                      |
| secondary normal voltage is 220V. Which of the     | a. low                                                                             |
| following statement about it is correct?           | b. high                                                                            |
| a. 220V is no load voltage                         | c. zero                                                                            |
| b. The no load voltage is more than 220V           | d. none of these                                                                   |
| c. The secondary voltage increases with            | ans:c                                                                              |
| increase in load                                   |                                                                                    |
| d. At a load which draws the rated current &       | 95. Transformer action needs that the magnetic                                     |
| the voltage becomes less than 220V.                | flux linking with the winding must                                                 |
| ans:b                                              | be                                                                                 |
|                                                    | a. constant                                                                        |
| 91.In which of the following transformer, part     | b. pulsating                                                                       |
| of the primary winding serves as the secondary     | c. alternating                                                                     |
| winding                                            | d. none of these                                                                   |
| a. Potential transformer                           | ans:c                                                                              |
| b. Auto transformer                                | ansie                                                                              |
| c. Step up transformer                             | 96. Low voltage windings are placed next to the                                    |
| d. None of these                                   | core to reduce                                                                     |
| ans:b                                              | a. Hysteresis loss                                                                 |
| u113.5                                             | b. eddy current loss                                                               |
| 92. The rating of the transformer is given in kVA  | c. insulation requirement                                                          |
| instead of kW because                              | d. copper loss                                                                     |
|                                                    |                                                                                    |
| a. kVA is fixed whereas kW depends on load pf      | ans:c                                                                              |
| b. load power factor is often not known            |                                                                                    |

| 97. The relation between the primary and          |                                                              |
|---------------------------------------------------|--------------------------------------------------------------|
| secondary ampere turns of transformer             | 102. A transformer has 2600 V on primary side                |
|                                                   | and 260 V on secondary side. The                             |
| a. exactly equal                                  | transformation ratio is_                                     |
| b. approximately equal                            | a.10                                                         |
| c. primary mmf larger than secondary mmf          | b.5                                                          |
| d. primary mmf smaller than secondary mmf         | c.0.1                                                        |
| ans:a                                             | d.9                                                          |
|                                                   | ans:c                                                        |
| 98. Positive voltage regulation occurs in case of |                                                              |
| transformer for                                   | 103. If the copper loss of a transformer at 70%              |
| a. capacitive load                                | of full load is 200 W. The full load copper loss is          |
| b. resistive load only                            |                                                              |
| c. inductive load only                            | a. 200 W                                                     |
| d. either inductive or resistive load             | b. 285.71 W                                                  |
| ans:d                                             | c.408.16W                                                    |
|                                                   | d. none of these                                             |
| 99. Cooling of the transformer is required so as  | ans:c                                                        |
| to                                                |                                                              |
| a. increase the efficiency                        | 104. A transformer having 1000 primary turns is              |
| b. to reduce the losses                           | connected 250 V ac supply. For a secondary                   |
| c. to reduce humming                              | voltage of 400 volt, the no of secondary turns               |
| d. to dissipate the heat generated in the         | should be                                                    |
| winding                                           | a.1600                                                       |
| ans:d                                             | b.250                                                        |
|                                                   | c.400                                                        |
| 100. The transformer efficiency will be           | d.1250                                                       |
| maximum at a power factor of                      | ans:a                                                        |
| a. 0.8pf lead                                     |                                                              |
| b. unity                                          | 105. If Copper loss of a transformer at 7/8 <sup>th</sup> of |
| c. 0.8 lag                                        | the full load is 4900W. Then its full load copper            |
| d. 0.5 lag or lead                                | loss is                                                      |
| ans:b                                             | a.5600                                                       |
|                                                   | b.6400                                                       |
| 101. The regulations of two transformers are (i)  | c.375                                                        |
| 3% and (ii) 97%. The one with better regulation   | d.429                                                        |
| is                                                | ans:b                                                        |
| a. second                                         |                                                              |
| b. first                                          | 106. At relatively light loads, the transformer              |
| c. both are same                                  | efficiency is low because                                    |
| d. depends on loading                             | a. secondary output is low                                   |
| ans:b                                             | b. transformer losses are high                               |

| c. fixed loss is high in proportion to the output d. copper loss is small. ans:c  107.A 3000 V/200 V, 50 Hz, single phase transformer is built on a core having an effective cross sectional area of 120 cm² and 60 turns on the secondary winding. The value of | effective cross sectional area of the core is 145 cm <sup>2</sup> . The no of secondary turns a.71 turns b.75 turns c.932 turns d.923 turns ans:a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| maximum flux density                                                                                                                                                                                                                                             | 111. A 80 kVA, 6000 V/ 400 V, 50 Hz single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a.1.25 Tesla                                                                                                                                                                                                                                                     | phase transformer has 80 turns on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b.1.52 Tesla                                                                                                                                                                                                                                                     | secondary winding. The value of maximum flux $% \left( 1\right) =\left( 1\right) \left( 1\right) \left$ |
| c.1.3 Tesla                                                                                                                                                                                                                                                      | in the core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| d.none of the above                                                                                                                                                                                                                                              | a.25.22mwb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ans:a                                                                                                                                                                                                                                                            | b.22.52mwb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 108. A 3000 V/200 V, 50 Hz, single phase                                                                                                                                                                                                                         | c.52.22mwb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| transformer is built on a core having an                                                                                                                                                                                                                         | d. none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| effective cross sectional area of 120 cm <sup>2</sup> and 60                                                                                                                                                                                                     | ans:b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| turns on the secondary winding. The number of                                                                                                                                                                                                                    | 112. A 6600 V/220 V, 50 Hz, step down single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| turns on the high voltage winding                                                                                                                                                                                                                                | phase transformer has 1500 turns on its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. 600 turns                                                                                                                                                                                                                                                     | primary side. If its maximum flux density is 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b. 900 turns                                                                                                                                                                                                                                                     | Tesla, then the effective cross sectional area of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| c. 300 turns                                                                                                                                                                                                                                                     | core is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| d. 450 turns                                                                                                                                                                                                                                                     | a.16.516 $\times$ 10 <sup>-3</sup> m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ans:b                                                                                                                                                                                                                                                            | $b.61.516 \times 10^{-3} \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                  | $c.26.516 \times 10^{-3} \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 109. A 3300 V/250 V, 50 Hz, single phase                                                                                                                                                                                                                         | $d.62.516 \times 10^{-3} \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| transformer has to be worked at a maximum                                                                                                                                                                                                                        | ans:a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| flux density of $1.1 \text{ wb/m}^2$ in the core. The                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| effective cross sectional area of the core is 145                                                                                                                                                                                                                | 113. A 10 kVA, 3300/240 V, single phase, 50 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cm <sup>2</sup> . The no of primary turns                                                                                                                                                                                                                        | transformer has a core area of 300 sq. cm. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a. 930 turns                                                                                                                                                                                                                                                     | flux density is 1.3 tesla. The primary full load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b. 950 turns                                                                                                                                                                                                                                                     | current is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| c. 932 turns                                                                                                                                                                                                                                                     | a. 3.03 amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| d. 923 turns                                                                                                                                                                                                                                                     | b. 33.03 amp<br>c. 30.3 amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ans:c                                                                                                                                                                                                                                                            | d. 0.303 amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                  | ans:a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 110. A 3300 V/250 V, 50 Hz, single phase                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| transformer has to be worked at a maximum                                                                                                                                                                                                                        | 114.A transformer is rated at 90 kVA, at full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| flux density of 1.1 web/m <sup>2</sup> in the core. The                                                                                                                                                                                                          | load its copper losses is 1100 W and its iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| losses is 950 W. The efficiency at full load for | efficiency at 75% of full load and unity power |
|--------------------------------------------------|------------------------------------------------|
| unity power factor is                            | factor                                         |
| a. 99%                                           | a.98.13%                                       |
| b.96%                                            | b.98.73%                                       |
| c.97.77%                                         | c.99%                                          |
| d. none of these                                 | d. none of these                               |
| ans:c                                            | ans:b                                          |
|                                                  |                                                |
| 115. A transformer is rated at 90 kVA, at full   | 117: The no load voltage at the secondary      |
| load its copper losses is 1100 W and its iron    | terminals of single phase transformer is       |
| losses is 950 W. The efficiency at 60% of full   | observed as 230 volt. When the transformer is  |
| load for 0.8 lagging power factor is             | loaded, the voltage on secondary side has      |
| a.96.97%                                         | reduced to 224 volt. Then the % regulation of  |
| b.96%                                            | transformer for that loading is                |
| c.98%                                            | a.2.6%                                         |
| d. none of these                                 | b.2.67%                                        |
| ans:a                                            | c.0%                                           |
|                                                  | d. none of these                               |
| 116. A 500 kVA transformer has iron loss of 2    | ans:a                                          |
| kW and full load copper losses of 5 kW. The      |                                                |
|                                                  |                                                |

# Sinhgad College of Engineering Basic Electrical Engineering

**Unit: 05 DC Circuits** 

- 1. A passive network
- a. Has no current source
- b. Has no e.m.f. source.
- c. Has neither of the above
- d. Has either of the above

Ans: c

## 2. In any linear network, the elements like inductor, resistor and capacitor always...

- a. Exhibit changes due to change in temperature
- b. Exhibit changes due to change in voltage
- c. Exhibit changes due to change in time
- d. Remains constant irrespective of change in temperature, voltage and time

  Ans: d

## 3. Which law plays a significant role in the loop analysis of the network?

- a. KCL
- b. KVL
- c. Law of Superposition Theorem
- d. None of the above

Ans: b

## 4. Which is the correct sequential order of steps to be undertaken while applying Thevenin's theorem?

- A. Calculation of Thevenin's equivalent voltage
- B. Removal of branch impedance through which required current is to be estimated
- C. Estimation of equivalent impedance between two terminals of the branch
- D. Estimation of branch current by schematic representation of Thevenin's equivalent circuit

a. A. C. B. D

b. B, A, C, D

c. D, A, C, B d. B, C, D, A

Ans: b

## 5. A network which contains one or more than one source of e.m.f. is known as

- a. Linear network
- b. Non-linear network
- c. Passive network
- d. Active network

Ans: d

#### 6. In non-linear network does not satisfy

- a. Superposition condition
- b. Homogeneity condition
- c. Both homogeneity and superposition condition
- d. Homogeneity, superposition and associative condition

Ans: d

## 7. A closed path made by several branches of the network is known as

- a. Branch
- b. Loop
- c. Circuit
- d. Junction

Ans: b

#### 8. A network consists of linear resistors and ideal voltage source. If the value of the resistors are doubled then voltage across each resistor is

- a. Halved
- b. Doubled
- c. Increased four lines
- d. Not changed

Ans: d

## 9. Which of the following is an active element in a circuit?

- a. Current source
- b. Resistance
- c. Inductance
- d. Capacitance

Ans: a

## 10. Which of the following is not a bilateral element?

- a. Constant current source
- b. Resister
- c. Inductor
- d. capacitor

Ans: a

## 11. The elements which are not capable of delivering energy by its own are known as

- a. Unilateral elements
- b. Nonlinear elements
- c. Passive elements
- d. Active elements

Ans: c

## 12. To neglect a voltage source, the terminals across the source are

- a.. Open-circuited
- b. Short-circuited
- c. Replaced by some resistance
- d. Replaced by inductor

Ans: b

# 13. For determining the polarity of a voltage drop across a resistor, it is necessary to know the

- a.. Value of resistor
- b. Value of current
- c. Direction of current flowing through the resistor
- d. Value of e.m.f. in the circuit

Ans: c

## **14.** Which of the following is the passive element?

- a. Capacitance
- b. Ideal current source

- c. Ideal voltage source
- d. All of the above

Ans: a

## 15. A terminal where three or more branches meet is known as

- a.. Node
- b. Terminus
- c. Combination
- d. Anode

Ans: a

#### 16. Ideal voltage source have

- a.. Zero internal resistance
- b. Infinite internal resistance
- c. Low value of current
- d. Large value of e.m.f.

Ans: a

#### 17. Ideal current source have

- a.. Zero internal resistance
- b. Infinite internal resistance
- c. Low value of voltage
- d. Large value of current

Ans: b

## 18. Star circuit has element of resistance R/2. The equivalent delta elements will be

- a.. R/6
- b. 3/2 R
- c. 2R
- d. 4R

Ans: b

# 19. A delta circuit has each element of value R/2. The equivalent elements of the star circuit will be

- a.. R/6
- b. R/3
- c. 2R
- d. 3R

Ans: a

## 20. A practical current source is represented by

- a.. A resistance in series with an ideal current source
- b. A resistance in parallel with an ideal current source
- c. A resistance in parallel with an ideal voltage source
- d None of the above

Ans: b

# 21. The terminals connected to the source are...... if a current source is to be neglected

- a. Open-circuited
- b. Short-circuited
- c. Replaced by a capacitor
- d. Replaced by a source resistance Ans: a

#### 22. Which of the following statements is incorrect?

- a.. Resistance is a passive element
- b. Inductor is a passive element
- c. Current source is a passive element
- d. Voltage source is an active element Ans: c

## 23. Kirchhoff's current law is applicable to only

- a. Junction in a network
- b. Closed loops in a network
- c. Electric circuits
- d. Electronic circuits

Ans: a

#### 24. Kirchhoff's current law states that

- a. Net current flow at the junction is positive
- b. Algebraic sum of the currents meeting at the junction is zero
- c. No current can leave the junction without some current entering it
- d. Total sum of currents meeting at the junction is zero

Ans: b

#### 25. Kirchhoff's voltage law is related to

- a.. Junction cards
- b. Battery e.m.f's
- c. IR drops
- d. Both B and C

Ans: d

# 26. According to Kirchhoff's voltage law, the algebraic some of all IR drops and e.m.fs. in any closed loop of a network is always

- a.. Negative
- b. Positive
- c. Determined by battery e. m. f's.
- d. Zero

Ans: d

### 27. The circuit having same properties in either direction is known as ...... circuit

- a. Bilateral
- b. Unilateral
- c. Irreversible
- d. Reversible

Ans: a

## 28. The circuit having different properties in either direction is known as ......circuit

- a. Bilateral
- b. Unilateral
- c. Irreversible
- d. Reversible

Ans: d

## 29. Two ideal voltage sources of unequal output voltages cannot be placed in.......

- a. Series
- b. Parallel
- c. Both series and parallel
- d. None of the above

Ans: b

# 30. Which type of networks allow the physical separability of the network elements (resistors, inductors & capacitors) for analysis purpose?

a. Lumped Networks

b. Distributed Networks

c. Unilateral Networks

d. Bilateral Networks

Ans: a

#### 31. Which type of networks don't allow the physical separability of the network elements (resistors, inductors & capacitors) for analysis purpose?

a. Lumped Networks

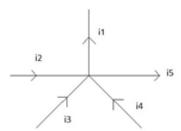
b. Distributed Networks

c. Unilateral Networks

d. Bilateral Networks

Ans: b

#### 32. KCL is based on the fact that


a There is a possibility for a node to store energy.

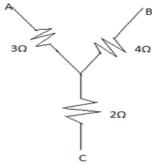
b There cannot be an accumulation of charge at a node.

c Charge accumulation is possible at node d Charge accumulation may or may not be possible.

Ans: b

#### 33. Relation between currents according to KCL is




 $a i_1=i_2=i_3=i_4=i_5$  $b i_1+i_4+i_3=i_5+i_2$ 

c i1-i5=i2-i3-i4

 $di_1+i_5=i_2+i_3+i_4$ 

Ans: d

#### 34. What will be the resistance between B and C when the network given below is converted into delta?



a  $13\Omega$ 

b  $8.66\Omega$ 

c 6.5Ω

d  $7.33\Omega$ 

Ans: b

#### 35. Thevenin's equivalent circuit consists of a

a. Voltage source in series with a resistor

b. Current source in parallel with a resistor

c. Voltage source in parallel with a resistor

d. Current source in series with a resistor Ans: a

#### 36. Thevenin's voltage is equal to \_\_\_\_

a Short circuit voltage

b Open circuit current

c Open circuit voltage

d Short circuit current

Ans: b

#### 37. What is the expression for the thevenin's current if there is an external resistance of R ohm in series with the RTh?

a  $V_{Th}/I_{Th}$ 

 $b V_{Th}/(R_{Th}-R)$ 

 $c V_{Th}/(R_{Th}+R)$ 

 $dV_{Th}/R_{Th}$ 

Ans: c

#### 38. One can find the thevenin's resistance simply by replacing all voltage sources by .....and current sources by ......& calculating equivalent resistance.

a opening, opening

b Shorting, Shorting

c Opening, Shorting

d Shorting, Opening Ans: d

39. The Superposition principle is obeyed

- a Linear networks
- b Non-linear networks
- c Lateral networks
- d Nine of the Above

Ans: a

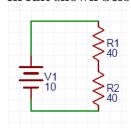
40. According to Superposition principle response in one element is the ..........of responses by individual sources acting alone.

- a Arithmetic Sum
- b Algebraic Sum
- c Product
- d Division

Ans: b

41. Superposition principle states that at a time \_\_\_\_\_ source(S) acts.

- a All the given sources
- b Only voltage sources
- c Only one source
- d Only current sources


Ans: c

42. If the voltage-current characteristics is a straight line through the origin, then the element is said to be?

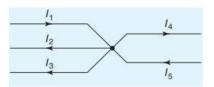
- a Linear element
- b Non-linear element
- c Unilateral element
- d Bilateral element

Ans: a

43. The voltage across R<sub>1</sub> resistor in the circuit shown below is?



- a 10
- b 5
- c 2.5
- d 1.25


Ans: b

44. The current flowing in the branches of a d.c. circuit may be determined using:

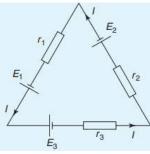
- a Kirchhoff's laws
- b Lenz's law
- c Faraday's laws
- d Fleming's left-hand rule

Ans: a

45. Which of the following statements is true



$$a I5 - I4 = I3 - I2 + I1$$


$$b I1 + I2 + I3 = I4 + I5$$

$$c I2 + I3 + I5 = I1 + I4$$

$$d I1 - I2 - I3 - I4 + I5 = 0$$

Ans: d

46. Which of the following statements is true



- a. E1 + E2 + E3 = Ir1 + Ir2 + Ir3
- b. E2 + E3 E1 I(r1 + r2 + r3) = 0
- c. I(r1 + r2 + r3) = E1 E2 E3
- d. E2 + E3 E1 = Ir1 + Ir2 + Ir3

Ans: c

47. Ra is resistance at A, Rb is resistance at B, Rc is resistance at C in star

| connection. After transforming to delta, what is resistance between B and C?  a. Rc+Rb+Rc*Rb/Ra b. Rc+Rb+Ra*Rb/Rc c. Ra+Rb+Ra*Rc/Rb d. Rc+Rb+Rc*Ra/Rb Ans: a | 52. In superposition theorem, when we consider the effect of one voltage source, all the other current sources are a Shorted b Opened c Removed d Undisturbed Ans: b |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48. Ra is resistance at A, Rb is resistance                                                                                                                  | <b>7</b> 2 <b>7</b>                                                                                                                                                  |
| at B, Rc is resistance at C in star                                                                                                                          | 53. In superposition theorem, when we                                                                                                                                |
| connection. After transforming to delta,                                                                                                                     | consider the effect of one current source,                                                                                                                           |
| what is resistance between A and C?                                                                                                                          | all the other current sources are                                                                                                                                    |
| a. Ra+Rb+Ra*Rb/Rc                                                                                                                                            | a Shorted                                                                                                                                                            |
| b. Ra+Rc+Ra*Rc/Rb                                                                                                                                            | b Opened                                                                                                                                                             |
| c. Ra+Rb+Ra*Rc/Ra                                                                                                                                            | c Removed                                                                                                                                                            |
| d. Ra+Rc+Ra*Rb/Rc                                                                                                                                            | d Undisturbed                                                                                                                                                        |
| Ans: b                                                                                                                                                       | Ans: b                                                                                                                                                               |
| 49. Ra is resistance at A, Rb is resistance                                                                                                                  | 54. Superposition theorem is valid for                                                                                                                               |
| at B, Rc is resistance at C in star                                                                                                                          | a. Linear systems                                                                                                                                                    |
| connection. After transforming to delta,                                                                                                                     | b. Non-linear systems                                                                                                                                                |
| what is resistance between A and B?                                                                                                                          | c. Both linear and non-linear systems                                                                                                                                |
| a. Rc+Rb+Ra*Rb/Rc                                                                                                                                            | d. Neither linear nor non-linear systems                                                                                                                             |
| b. Ra+Rb+Ra*Rc/Rb                                                                                                                                            | Ans: a                                                                                                                                                               |
| c. Ra+Rb+Ra*Rb/Rc                                                                                                                                            |                                                                                                                                                                      |
| d. Ra+Rc+Ra*Rc/Rb                                                                                                                                            | 55. Superposition theorem does not work                                                                                                                              |
| Ans: c                                                                                                                                                       | for                                                                                                                                                                  |
|                                                                                                                                                              | a. Current                                                                                                                                                           |
| 50. In superposition theorem, when we                                                                                                                        | b. Voltage                                                                                                                                                           |
| consider the effect of one voltage source,                                                                                                                   | c. Power                                                                                                                                                             |
| all the other voltage sources are                                                                                                                            | d. Works for all: current, voltage and power                                                                                                                         |
| a. Shorted                                                                                                                                                   | Ans: c                                                                                                                                                               |
| b. Opened                                                                                                                                                    |                                                                                                                                                                      |
| c. Removed                                                                                                                                                   | 56. Thevenin's resistance is found by                                                                                                                                |
| d. Undisturbed                                                                                                                                               | •                                                                                                                                                                    |
| Ans: a                                                                                                                                                       | a Shorting all voltage sources                                                                                                                                       |
|                                                                                                                                                              | b Opening all current sources                                                                                                                                        |
| 51. In superposition theorem, when we                                                                                                                        | c Shorting all voltage sources and opening                                                                                                                           |
| consider the effect of one current source,                                                                                                                   | all current sources                                                                                                                                                  |
| all the other voltage sources are                                                                                                                            | d Opening all voltage sources and shorting                                                                                                                           |
|                                                                                                                                                              | all current sources                                                                                                                                                  |
| a Shorted                                                                                                                                                    | Ans: c                                                                                                                                                               |
| b Opened                                                                                                                                                     |                                                                                                                                                                      |
| c Removed                                                                                                                                                    | 57. In Thevenin's theorem Vth is                                                                                                                                     |
| d Undisturbed                                                                                                                                                |                                                                                                                                                                      |

Ans: a

a. Sum of two voltage sources

b. A single voltage source

c. Infinite voltage sources  $a.360 \Omega$ d. 0  $b.240 \Omega$ Ans: b  $c.180 \Omega$  $d.120 \Omega$ 58. An active element in a circuit is one Ans: a which Receives energy 64. The resistor values in wye network Supplies energy that is equivalent to a delta containing Both receives and supplies energy three 12 k $\Omega$  resistor is None of the above a.  $2 k\Omega$ Ans: b b.  $4 k\Omega$ c.  $8 k\Omega$ 59. A passive element in a circuit is one d.  $36 \text{ k}\Omega$ which... Ans: b Receives energy Supplies energy 65. The superposition theorem applies to Both receives and supplies energy a. Current / Voltage calculations None of the above b. Power calculations Ans: a c. Current and power calculations d. Voltage and power calculations 60. A linear circuit is one whose Ans: a parameter \_ a. Changes with change in current 66. Why does the Superposition theorem b. Changes with change in voltage not applicable to power? a. Because it is proportional to square of c. Changes with both voltage and current d. Do not changes with voltage and current current and current is a non-linear function b. Because it is proportional to square of Ans:d voltage and voltage is a non-linear function c. Both a and b 61. The superposition theorem is used when the circuit contains d. None of the above a. A single voltage sources Ans: a b. A number of voltage sources c. Only passive elements d. None of the above Ans: b 62. Star/Delta or Delta/Star technique is applied to \_ network a. One terminal b. Two terminal c. Three terminal d. None of the above Ans: c

63. The resistor value in delta network that is equivalent to a wye containing

three 120  $\Omega$  resistors is

#### **UNIT-VI**

#### Work, Power, Energy and Batteries

1. Which effect of electrical current is utilized in 6. Which statement is correct? thermal systems? a.1cal=4.12 J a. Magnetic b.1cal=4.186 J b. chemical c.1cal=4.44 J d.1cal=3.986 J c. heating d. all above ans:b ans: c 7. The amount of heat energy required to 2. As per the Joule's law the amount of heat change the state of the substance without produced is proportional to change in the temperature is called as a. I.R a. Kinetic energy b. V.I b. Potential energy c. V.I.t c. Latent heat energy d. None of above d. All of above ans: c ans:c 3. Geyser is a example of which system 8. The amount of heat energy obtained by burning the unit mass of the fuel is called as a. Mechanical b. Electrical a. Molecular value c. Thermal b. Calorific value d. None of above c. Atomic value d. None of above ans: b ans:b 4. Boiling temp. of water is 9. The unit of "THERMAL ENERGY" is a.50 a. Kilowatt-hour b.75 c.100 b. Watt-sec d.35 c. Joule d. all of above ans: c ans:c 5. The amount of heat energy required to change the temp. of a given substance without 10. Which effect of electric current is utilized in change in the form of the substance is called as electric lamps? a. Sensible heat energy a. Magnetic effect b. Latent heat energy b. Chemical effect c. Both of above c. Heating effect d. None of above d. All of above ans:c ans:a

11. The heat energy required to convert a body d. none of above from solid state to liquid state is called as ans:a a. Latent heat of fusion b. Latent heat of vaporization 17. Which relationship is correct c. Calorific value a. P=T.ω d. All of above b. P=T/ω c. P=T.v d.None of above ans: a ans:a 12. The heat energy required to convert liquid 18. Power is defined as state to gaseous state is called as a. Latent heat of liquification. a. capacity to do the work b. Latent heat of vaporization b. work done/time c. both of above c. work done. time d. None of above d. all above ans: b ans:b 13. The unit of specific heat capacity is 19. Energy is defined as a. J/Kg a. work done/time b. J/KgK b. capacity to do the work c. joules c. energy=power x resistance d. none of above d. all above ans: b ans:b 14. MOTOR-PUMP SET is the example of which 20. Effective water head of a Hydro-electric system power plant means it's a. Electro-mechanical system a. loss b. Electro-chemical system b. height c. Only electrical system c. friction d. none of above d. All above ans:b ans: a 15. The unit of force is 21. Efficiency is the ratio of a. Newton a. power and time b. Joule b. output and input c. Newton-metre c. input and output d. none of above d. above all ans:b ans: a 16. One metre cube holds a water of 22. Wind-mill-Generator set is the example of

a.1000Kg

b.1000gm

c.1000miligram

a. electro-chemical system

b. electro-thermal systemc. mechanical-electrical system

d. all above

ans: c

- 23. Which relationship is correct?
- a. volume=mass. Density
- b. volume=mass/density
- c. volume=mass + density
- d. none of above

ans: a

- 24. Potential energy is given as
- a. E= m.g.h
- b. E=m.g
- c. E=m.g.t
- d. above all

ans: a

25. Kinetic energy is given by

a. 
$$E = \frac{1}{2}mV^2$$

b. 
$$E = \frac{1}{2} mV$$

c. 
$$E = \frac{1}{2}mt$$

d. none of above

ans: a

26. A 100W electric light bulb is connected to a

250V supply. The current in the circuit is

a.0.3A

b. 0.4A

c. 1.4A

d. 0.6A

ans: b

27. A 100W electric light bulb is connected to a

250V supply. Its hot resistance is

 $a.625\Omega$ 

 $b.526\Omega$ 

c. 62.5Ω

d.  $625 m\Omega$ 

ans:a

28. 60  $\mu$ s is equivalent to:

- a.0.06s
- b. 0.00006s
- c. 1000 minutes
- d. 0.6 s

ans: b

29. The current which flows when 0.1 coulomb

is transferred in 10 ms is

a. 1A

b. 10A

c. 10mA

d. 100mA

ans: b

30. The p.d. applied to a 1  $k\Omega$  resistance in order that a current of 100  $\mu$ A may flow is

a. 1V

b. 100V

c. 0.1V

d. 10V

ans:c

31. The power dissipated by a resistor of  $4\Omega$ when a current of 5A passes through it is

a. 6.25W

b. 20W

c. 80W

d. 100W

ans:d

- 32. Which of the following statements is true?
- a. Electric current is measured in volts
- b. 200 k $\Omega$  resistance is equivalent to 2M $\Omega$
- c. An ammeter has a low resistance and must be

connected in parallel with a circuit

d. An electrical insulator has a high resistance

ans:d

33. A current of 3A flows for 50 hrs through a6 $\Omega$ resistor. The energy consumed by the

resistor is:

a.0.9 kWh

| b.2.7 kWh                                       | ans: a                                           |
|-------------------------------------------------|--------------------------------------------------|
| c.9 kWh                                         | 39. In what time would a current of 1A transfer  |
| d.27 kWh                                        | a charge of 30 Coulomb?                          |
| ans:b                                           | a. 45s                                           |
|                                                 | b. 30s                                           |
| 34. What must be known in order to calculate    | c. 65s                                           |
| the energy used by an electrical appliance?     | d.4s                                             |
| a. voltage and current                          | ans: b                                           |
| b. current and time of operation                |                                                  |
| c. power and time of operation                  | 40. How long must a current of 0.1A flow so as   |
| d. current and resistance                       | to transfer a charge of 30 Coulomb?              |
| ans: c                                          | a. 5 min                                         |
|                                                 | b. 5s                                            |
| 35. Voltage drop is the                         | c. 50min                                         |
| a. maximum potential                            | d. 50s                                           |
| b. difference in potential between two points   | ans: a                                           |
| c. voltage produced by a source                 |                                                  |
| d. voltage at the end of a circuit              | 41. A force of 4N moves an object 200 cm in the  |
| ans: b                                          | direction of the force. Work done is             |
|                                                 | a. 6 J                                           |
| 36. A 240V, 60Wlamp has a working resistance    | b. 8 J                                           |
| of                                              | c. 4 J                                           |
| a. 1400 ohm                                     | d. 10 J                                          |
| b. 60 ohm                                       | ans:b                                            |
| c. 960 ohm                                      |                                                  |
| d. 325 ohm                                      | 42. The amount of work done in lifting a mass of |
| ans:c                                           | 500 kg to a height of 6min 30 sec                |
|                                                 | a. 2943J                                         |
| 37. The energy used by a 1.5kW heater in 5      | b. 0.2943J                                       |
| minutes is:                                     | c. 29.43J                                        |
| a. 5 J                                          | d. 29.43KJ                                       |
| b. 450 J                                        | ans:d                                            |
| c. 7500 J                                       |                                                  |
| d. 450000 J                                     | 43. The power required in lifting a mass of 500  |
| ans:d                                           | kg to a height of 6m in 30 sec                   |
|                                                 | a.198J                                           |
| 38. If a current of 5A flows for 2 minutes, the | b. 981W                                          |
| quantity of charge transferred will             | c.198W d. 981J                                   |
| a. 600C                                         | ans: b                                           |
| b. 100C                                         |                                                  |
| c. 0.6C                                         | 44. 0.32mA= μA                                   |
| d. 60C                                          | a.0.0032                                         |

b.0.032 a. 0.5 kWh c.0.00032 b. 4 kWh d.320 c. 2 kWh ans: d d. 0.02 kWh ans: b 45. A portable machine requires a force of 200N to move it. If the machine is moved through 50. Amount of heart energy required to raise 20m in 25s, power required is the temperature of 10kg of water through a. 160kW 100°C is (S<sub>w</sub> of water as 4200J/kgK) b. 1600W a. 4.2kJ c. 16kW b.4.2MI d.160W c. 42kJ ans: d d. 420J ans:b 46. Energy provided by a source e.m.f. of 5V supplying a current of 3A for 10 minutes is 51. The opposition to the flow of leakage a.9kJ current is called as b. 65J a. resistance c. 25kJ b. leakage coefficient d. 90kJ c. insulation resistance d. all above ans: a ans:c 47. 450 J of energy are converted into heat in 1 minute. The power dissipated is 52. The insulation resistance is generally a.7.5kW measured in.. b.7.5W a. ohms c.750W b. Mega ohms d. 600W c. milli ohms d. none of above ans: b ans:b 48. The power rating of a d.c. electric motor consuming 36 MJ when connected to a 250V 53. The insulation resistance of a cable is supply for 1 hour is a. directly proportional to length of cable a. 100W b. inversely proportional to length of cable b.10W c. remains same with change in length c.500W d. none of above d. 10KW ans:b ans: d 54. Which is the expression for insulation 49. A current of 2A flows for 10 h through resistance of a single core cable

resistor is

a100 $\Omega$ resistor. The energy consumed by the

a. R=ρ l/a

- b.  $R_i = \frac{\rho}{2\pi l} ln(R_2/R_1)$
- c.  $R_i = \frac{\rho}{2\pi l} (R_2/R_1)$
- d. none of above

ans:b

- 55. As the thickness of insulation layer of a cable increases, it's insulation resistance will
- a. increase
- b. decrease
- c. remain same
- d. none of above

ans: a

- 56. As the Temperature of surrounding increases the insulation resistance will
- a. increase
- b. remain same
- c. decrease
- d. none of above

ans: c

- 57. Which is a good conductor of electricity?
- a. normal tap water
- b. pure water
- c. glass
- d. plastic

ans: b

- 58. As moisture content in the air increases, then the insulation resistance will
- a. decrease
- b. remain same
- c. increase
- d. none of above

ans: a

- 59. When the Humidity in the surrounding increases, the leakage current in the cable will
- a. remain same
- b. increase
- c. decrease

d. all of above

ans: b

- 60. Factors affecting the insulation resistance of a cable are
- a. length
- b. thickness
- c. resistivity of insulating material
- d. all above

ans:d

- 61. If length of cable is doubled, then its insulation resistance will
- a. reduce by 25%
- b. reduce by 50%
- c. increase by 50%
- d. reduce by 55%

ans:b

- 62 .If two cables with their insulation resistances  $Ri_1$  and  $Ri_2$  are joined in series, then their equivalent resistance will be
- a. Ri<sub>1</sub> + Ri<sub>2</sub>
- b. Ri<sub>1</sub> Ri<sub>2</sub>
- c.  $Ri_1 / Ri_2$
- d.  $(Ri_1.Ri_2) / (Ri_1 + Ri_2)$

ans:d

- 64. If the thickness of insulation layer of cable is doubled, then its insulation resistance will
- a. reduce by 25%
- b. increase by 50%
- c. increase by 58.5%
- d. reduce by 55%

ans:c

- 65. If two cables with their insulation resistances  $Ri_1$  and  $Ri_2$  with conductor resistances  $R_1$  and  $R_2$  respectively are joined in parallel, then their conductor equivalent resistance will be
- a.  $R_1 + R_2$

- b. Ri<sub>1</sub> Ri<sub>2</sub>
- c. Ri<sub>1</sub> / Ri<sub>2</sub>
- d.  $(R_1 R_2) / (R_1 + R_2)$

ans: d

- 66. What is current?
- a. Flow of electrons.
- b. Flow of protons
- c. Flow of Neutrons.
- d. None of above.

ans: a

- 67. What is Resistance?
- a. to assist the flow of current.
- b. opposition the flow of current.
- c. opposition the flow of voltage.
- d. to assist the flow of voltage.

ans:a

- 68. Unit of resistance is...
- a. Volts.
- b. Amperes.
- c. Ohm.
- d. Faraday.

ans:c

- 69. Resistance of material will decrease with increase of.....
- a. Length of material.
- b. Both Length and Cross-section area of material
- c. Cross-section area of material.
- d. None of above.

ans:c

- 70. According to Ohm's law current in the conducting material is directly proportional to...
- a. Resistance of material.
- b. Voltage across.
- c. Both Voltage and Resistance.
- d. None of above.

ans:b

- 71. According to Ohm's law current in conducting material is inversely proportional to....
- a. Voltage across it.
- b. Both Voltage and Resistance.
- c. Resistance of material.
- d. None of above.

ans:c

- 72. What are the factors on which resistance of material depends?
- a. Length and Cross-section area of material.
- b. Temperature of material.
- c. Specific resistivity of material.
- d. All of above.

ans:d

- 73. Resistance of material will increase with increase of?
- a. Cross-section area of material.
- b. Length of material.
- c. Both Length and Cross-section area of material.
- d. None of above.

ans:b

- 74. What will be the effect on the resistance of conducting material if the temperature increases?
- a. No effect on resistance.
- b. Resistance will increase.
- c. Resistance will decrease.
- d. Resistance will remain same.

ans:b

- 75. What will be the effect on the resistance of conducting material if the temperature decreases?
- a. Resistance will remain same.
- b. No effect on resistance.
- c. Resistance will increase.
- d. Resistance will decrease.

ans:d

- 76. What will be the effect on the resistance of insulating material if the temperature increases?
- a. No effect on resistance.
- b. Resistance will increase.
- c. Resistance will remain same.
- d. Resistance will decrease.

ans:d

- 77. What will be the effect on the resistance of insulating material if the temperature decreases?
- a. Resistance will remain same.
- b. No effect on resistance.
- c. Resistance will increase.
- d. Resistance will decrease.

ans:c

- 78. What will be the resistance of semiconductor at low temperature?
- a. Resistance will be high.
- b. Resistance will be low.
- c. No effect on resistance
- d. None of above.

ans:a

- 79. What will be the resistance of semi-conductor at high temperature?
- a. Resistance will be high
- b. No effect on resistance.
- c. Resistance will be low.
- d. None of above.

ans:c

- 80. At low temperature semi-conductor will behave as?
- a. Insulator.
- b. Conductor.
- c. Semi-conductor.
- d. None of above.

ans:a

- 81. At high temperature semi-conductor will behave as?
- a. Insulator.
- b. Conductor.
- c. Semi-conductor.
- d. None of above.

ans:b

- 82. The length of a conductor or a wire is doubled and its cross section is also doubled then the resistance will.
- a. Increases four times.
- b. Remains unchanged.
- c. Decreases four times.
- d. Change at random.

ans:b

- 83. The variation of resistance with temperature is governed by a property called.
- a. Resistance access coefficient (RAC).
- b. Resistance nature coefficient (RNC).
- c. Resistance temperature coefficient (RTC).
- d. None of above.

ans:c

- 84. Temperature co-efficient of resistance at  $0^{\circ}\text{C}$  is defined as the change in resistance per ohm original resistance per  $^{\circ}\text{C}$  change in temperature.
- a. True.
- b. False.

ans:a

- 85. Unit of Temperature co-efficient of resistance is.
- a.  $/\Omega/^{0}C$ .
- b. /°C.
- c. °C.
- d. Ώ/ºC.

ans:b

86. Temperature co-efficient of resistance  $\alpha_{\rm 0}$  is given by.

a. 
$$\alpha_0 = \frac{R_t - R_0}{R_0 \cdot t}$$

b. 
$$\alpha_0 = \frac{R_0 - R_t}{R_t \cdot t}$$

$$c. \alpha_0 = \frac{R_1 - R_2}{R_1 \cdot t}$$

d. 
$$\alpha_0 = \frac{R_2 - R_1}{R_0 \cdot t}$$

ans:a

- 87. At  $0^{\circ}\text{C}$  a specimen of copper have a resistance of  $4\text{m}'\Omega$  and its temperature coefficient of resistance equal to 1/234.5 per  $0^{\circ}\text{C}$ . Find the value of its temperature co-efficient at  $70^{\circ}\text{C}$ .
- a. 0.003248/°C.
- b. 0.003428/°C.
- c. 0.003284/°C.
- d. 0.003434/°C.

ans:

- 88. At  $0^{\circ}$ C a specimen of copper have a resistance of  $4\text{m}'\Omega$  and its temperature coefficient of resistance equal to 1/234.5 per  $0^{\circ}$ C. Find the value of resistance at  $70^{\circ}$ C.
- a.  $4.5m\Omega$ .
- b.  $3.5m\Omega$ .
- c.  $5.19m\Omega$ .
- d.  $5.5m\Omega$ .

ans:c

- 90. An aluminum conductor has resistance of  $10\Omega$  AT  $20^{\circ}$ C and the RTC of 0.0039 per  $^{\circ}$ C at  $20^{\circ}$ C .Find the RTC at  $0^{\circ}$ C.
- a. 0.000124/°C.
- b. 0.00423/°C.
- c.0.00324/°C.
- d. 0.0000423/°C.

ans:b

91. Find the resistance of filament of 60 watt in a 230 V supply lamp at its working temperature.

- a. 990 Ω.
- b. 881.667 Ω.
- c. 981.667 Ω.
- d. 1000 Ω.

ans:b

- 92. A single core cable has 1.5cm diameter conductor and thickness of insulation is 2.2 cm. The resistivity of insulating material is  $9.2\times10^{12}$   $\Omega$ -m. Determine the insulation resistance per km length of cable.
- a. 2×10<sup>12</sup> Ω.
- b. 2.9×10<sup>13</sup> Ω.
- c. 2×10<sup>9</sup> Ω.
- d. 9.2×10<sup>12</sup> Ω.

ans:c

- 93. A single core cable has 1.5cm diameter conductor and thickness of insulation is 2.2 cm. The resistivity of insulating material is  $9.2\times10^{12}$   $\Omega$ -m. Determine the insulation resistance per km length of cable. If the working voltage of conductor is 1100V, what is the leakage current per km of cable?
- a. 0.55×10<sup>-6</sup>A.
- b. 1.55×10<sup>-6</sup>A.
- c. 0.55×10<sup>-12</sup>A.
- d. 0.55×10<sup>6</sup>A.

ans:a

- 94. The armature winding of a D.C. machine when connected to D.C. supply of 240 V was drawing 1.6 A at  $25^{\circ}$ C and 1.25 A when heated. Evaluate temperature of armature winding if  $\alpha$  of its material at  $25^{\circ}$ C is  $0.0039/^{\circ}$ C.
- a. 100°C.
- b. 110°C.
- c. 96.79°C.
- d. 98.79°C.

ans:c

| 95. If the length of a wire of resistance R is uniformly stretched to n times its original value, its new resistance is a.nR b. R/n c. n <sup>2</sup> R | <ul><li>a. negative</li><li>b. infite</li><li>c. zero</li><li>d. positive</li><li>ans: d</li></ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| d.r/n <sup>2</sup>                                                                                                                                      | 101. Insulation resistance of the insulating                                                       |
| ans:c                                                                                                                                                   | material should be a. high                                                                         |
| 96. Two wires A and B of same material and                                                                                                              | b. low                                                                                             |
| length L and 2L have radius r and 2r                                                                                                                    | c. zero                                                                                            |
| respectively. The ratio of their specific                                                                                                               | d. none of these                                                                                   |
| resistance will be                                                                                                                                      | ans:a                                                                                              |
| a.1:1                                                                                                                                                   | aris.a                                                                                             |
| b.1:2                                                                                                                                                   | 102. The flow of current in solids is due to                                                       |
| c.1:4                                                                                                                                                   | a. electrons                                                                                       |
| d.1:8                                                                                                                                                   | b. electrons and ions                                                                              |
| ans:a                                                                                                                                                   | c. atoms                                                                                           |
|                                                                                                                                                         | d. nucleus                                                                                         |
| 97. Two wires A and B of same material and                                                                                                              | ans: a                                                                                             |
| length L and 2L have radius r and 2r                                                                                                                    |                                                                                                    |
| respectively. The ratio of their resistances will                                                                                                       | 103. The resistance of human body is around                                                        |
| be                                                                                                                                                      | a. 5 ohms                                                                                          |
| a.1:1                                                                                                                                                   | b. 25 ohms                                                                                         |
| b.2:1                                                                                                                                                   | c. 250 ohms                                                                                        |
| c.4: 1                                                                                                                                                  | d. 1000 ohms                                                                                       |
| d.1:8                                                                                                                                                   | ans:d                                                                                              |
| ans:b                                                                                                                                                   |                                                                                                    |
|                                                                                                                                                         | 104. One commercial unit of energy equals                                                          |
| 99. A length of wire having resistance of 1 ohm                                                                                                         | a. 500 watt seconds                                                                                |
| is cut into four equal parts and these four parts                                                                                                       | b. one watt hour                                                                                   |
| are bundled together side-by-side to form a                                                                                                             | c. one kilowatt hour                                                                               |
| wire. The new resistance will be                                                                                                                        | d. ten kilowatt hour                                                                               |
| a.1/4 ohm                                                                                                                                               | ans:c                                                                                              |
| b.1/16 ohm                                                                                                                                              |                                                                                                    |
| c.4 ohm                                                                                                                                                 | 105. One coulomb charge equals the charge on                                                       |
| d.16 ohm                                                                                                                                                | a. 6.24x10 <sup>12</sup> electrons                                                                 |
| ans:b                                                                                                                                                   | b. 6.24x10 <sup>14</sup> electrons                                                                 |
|                                                                                                                                                         | c. 6.24x10 <sup>16</sup> electrons                                                                 |
| 100. The hot resistance of filament of a bulb is                                                                                                        | d. 6.24x10 <sup>18</sup> electrons                                                                 |
| higher than the cold resistance because the temperature coefficient of filament is                                                                      | ans:d                                                                                              |

| 106. Electric pressure is also called a. resistance b. power c. voltage d. energy ans:c                                                                                                                                                                          | <ul><li>a. copper</li><li>b. aluminum</li><li>c. carbon</li><li>d. brass</li><li>ans:c</li></ul>                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 107. With rise in temperature resistance of pure metals a. increases b. decreases c. first increases then decreases d. remains constant                                                                                                                          | <ul><li>112. Ohm's law is not applicable to</li><li>a. vaccum tubes</li><li>b. carbon resistor</li><li>c. high voltage circuits</li><li>d. circuits at low current densities</li><li>ans:a</li></ul> |
| ans:a                                                                                                                                                                                                                                                            | 113. Which one of the following does not have negative temperature coefficient                                                                                                                       |
| 108. With rise in temperature resistance of semiconductors a. increases b. decreases c. first increases then decreases d. remains constant                                                                                                                       | <ul><li>a. aluminum</li><li>b. paper</li><li>c. rubber</li><li>d. mica</li><li>ans:a</li></ul>                                                                                                       |
| ans:b                                                                                                                                                                                                                                                            | 114. An electrical effort required to drift the free electrons in one particular direction, in a                                                                                                     |
| 109. The resistance of copper wire 200 m long is 21 ohms. If its thickness is 0.44 mm, its specific resistance is around a. $1.2 \times 10^{-8} \Omega$ -m b. $1.4 \times 10^{-8} \Omega$ -m c. $1.6 \times 10^{-8} \Omega$ -m d. $1.8 \times 10^{-8} \Omega$ -m | conductor is called a.MMF b.EMF c. current d. all above ans:b                                                                                                                                        |
| ans:c                                                                                                                                                                                                                                                            | 115. An effort required to drift the free electrons in one particular direction, in a                                                                                                                |
| <ul><li>110. Which of the following material has nearly zero temperature coefficient of resistance</li><li>a. manganin</li><li>b. porcelain</li><li>c. carbon</li><li>d. copper</li><li>ans:a</li></ul>                                                          | conductor is called EMF a. chemical b. mechanical c. electrical d. thermal ans:c                                                                                                                     |
| 111. Which of the following material has a negative temperature coefficient of resistance                                                                                                                                                                        | 116. I = /t amp<br>a. R<br>b. L                                                                                                                                                                      |

| c. Q                                              | a. resistivity                                        |
|---------------------------------------------------|-------------------------------------------------------|
| d. t                                              | b. conductivity                                       |
| ans:c                                             | c. permittivity                                       |
|                                                   | d. all above                                          |
| 117. The ability of a charged particle to do work | ans:b                                                 |
| is called                                         |                                                       |
| a. potential difference                           | 123. The material having poorest value of             |
| b. electric potential                             | is best insulator.                                    |
| c. magnitude                                      | a. resistivity                                        |
| d. magnetism                                      | b. conductivity                                       |
| ans:b                                             | c. permittivity                                       |
|                                                   | d. all above                                          |
| 118. The unit of electric potential is            | ans:b                                                 |
| a.amp                                             |                                                       |
| b. coulomb                                        | 124. The resistance of copper wire 25 m long is       |
| c. volt                                           | found to be 50 $\Omega.$ If its diameter is 1mm, then |
| d. tesla                                          | resistivity of copper is                              |
| ans:c                                             | a.1.57 μΩ-m                                           |
|                                                   | b.1.57 Ω-m                                            |
| 119. 1 calorie =                                  | c.15.7 Ω-m                                            |
| a.4.186 joules                                    | d. none of the above                                  |
| b.0.24 joules                                     | ans:a                                                 |
| c.41.86 joules                                    |                                                       |
| d. none of the above                              | 125. Factors which affect the resistance              |
| ans:a                                             | a. length of the material                             |
|                                                   | b. cross sectional area                               |
| 120. Unit of resistivity is                       | c. temperature                                        |
| a. Ω                                              | d. all above                                          |
| b. Ω-m                                            | ans:d                                                 |
| c. Ω/m                                            |                                                       |
| d. all above                                      | 126. Effect of temperature on resistance              |
| ans:b                                             | depends on of material                                |
|                                                   | a. size                                               |
| 121. Unit of conductance is                       | b. shape                                              |
| a. ohms                                           | c. nature                                             |
| b. siemens                                        | d. length                                             |
| c. newtons                                        | ans:c                                                 |
| d. none of above                                  |                                                       |
| ans:b                                             | 127. Resistance of carbon as the                      |
|                                                   | temperature increases                                 |
| 122. The material having highest value of         | a. increases                                          |
| is best conductor                                 | b. remains same                                       |

Sinhgad Institute of Technology Lonavala

| c. decreases                                                                     | d. all above                                                |
|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| d. none of above                                                                 | ans:c                                                       |
| ans:c                                                                            |                                                             |
|                                                                                  | 133. Insulation resistance $R_i = V/I_i$ , in this V is     |
| 128. Semiconductors have temperature                                             |                                                             |
| coefficient                                                                      | a. voltage between conductor and earth                      |
| a. positive                                                                      | b. voltage between insulation and earth                     |
| b.negative                                                                       | c. voltage between conductor and insulator                  |
| c.zero                                                                           | d. all above                                                |
| d.all above                                                                      | ans:a                                                       |
| ans:b                                                                            |                                                             |
|                                                                                  | 134. Insulation resistance $R_i = V/I_I$ , in this $I_I$ is |
| 129. Resistance temperature coefficient is                                       |                                                             |
| denoted by                                                                       | a. current                                                  |
| a. α                                                                             | b. voltage                                                  |
| b. β                                                                             | c. leakage current                                          |
| c. θ                                                                             | d. line current                                             |
| d. Φ                                                                             | ans:c                                                       |
| ans:a                                                                            |                                                             |
|                                                                                  | 135. Insulation resistance is                               |
| 130. The RTC at t <sup>o</sup> C is ratio of                                     | proportional to its length                                  |
| a. change in conductance per degree Celsius to                                   | a. directly                                                 |
| the resistance at t <sup>0</sup> C                                               | b. inversely                                                |
|                                                                                  | ·                                                           |
| b. change in resistance per degree Celsius to the resistance at t <sup>o</sup> C | c. not<br>d. none of above                                  |
|                                                                                  |                                                             |
| c. change in initial resistance per degree Celsius                               | ans:b                                                       |
| to the resistance at t <sup>0</sup> C                                            | 426                                                         |
| d. all above                                                                     | 136. Insulation resistance is inversely                     |
| ans:b                                                                            | proportional to its                                         |
|                                                                                  | a. length                                                   |
| 131. Unit of RTC is                                                              | b. area                                                     |
| a. °C                                                                            | c. diameter                                                 |
| b. /°C                                                                           | d. cross sectional area                                     |
| c. Ω/ °C                                                                         | ans: a                                                      |
| d. all above                                                                     |                                                             |
| ans:b                                                                            | 137. Which of the following substance, the                  |
|                                                                                  | resistance decreases with the increase of                   |
| 132. Insulation resistance is defined as                                         | temperature?                                                |
| opposition to the flow of                                                        | a. carbon                                                   |
| a. current                                                                       | b. constantan                                               |
| b. voltage                                                                       | c. copper                                                   |
| c. leakage current                                                               | d. silver                                                   |
|                                                                                  |                                                             |

| ans:a                                                         | 400 $M\Omega$ resp. if cables are connected in series,                              |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 138. At 300K the temperature coefficient of                   | its insulation resistance is                                                        |
| resistance of a wire is 0.00125 /°C and its                   | a.120 MΩ                                                                            |
| resistance is one ohm. The resistance of wire                 | b.240 Ω                                                                             |
| will be 2 ohm at                                              | c.240 MΩ                                                                            |
| a. 1154 K                                                     | d. 160 Ω                                                                            |
| b. 1100 K                                                     | ans:c                                                                               |
| c. 1400 K                                                     |                                                                                     |
| d. 1127 K                                                     | 143.Two underground cables A and B, each has                                        |
| ans: b                                                        | a conductor resistance of 0.6 $\Omega$ and 0.8 $\Omega$ resp.                       |
|                                                               | each has insulation resistance of 600 M $\Omega$ and                                |
| 139. The conventional electric current is due to              | 400 M $\Omega$ resp. if cables are connected in parallel,                           |
| the flow of                                                   | its insulation resistance is                                                        |
| a. positive charges only                                      | a.1200 MΩ                                                                           |
| b. negative charges only                                      | b.2400 Ω                                                                            |
| c. neutral particles only                                     | c.1000 MΩ                                                                           |
| d. both positive and negative charges.                        | d. 1600 Ω                                                                           |
| ans:b                                                         | ans:c                                                                               |
|                                                               |                                                                                     |
| 140. Insulators have temperature                              | 144. Two underground cables A and B, each has                                       |
| coefficient of resistance                                     | a conductor resistance of 0.6 $\Omega$ and 0.8 $\Omega$ resp.                       |
| a. positive                                                   | each has insulation resistance of 600 $\mbox{M}\Omega$ and                          |
| b. negative                                                   | 400 $\mbox{M}\mbox{\ensuremath{\Omega}}$ resp. if cables are connected in parallel, |
| c. zero                                                       | its conductor resistance is                                                         |
| d. none of the above                                          | a.0.3428 $\Omega$                                                                   |
| ans:b                                                         | b.0.240 Ω                                                                           |
|                                                               | c.0.240 MΩ                                                                          |
| 141. Two underground cables A and B, each has                 | d. $0.160~\Omega$                                                                   |
| a conductor resistance of 0.6 $\Omega$ and 0.8 $\Omega$ resp. | ans:a                                                                               |
| each has insulation resistance of 600 $\mbox{M}\Omega$ and    |                                                                                     |
| 400 $M\Omega$ resp. if cables are connected in series,        | 145. Match the pair                                                                 |
| its conductor resistance is                                   | 1. Resistance a. /°C                                                                |
| a.1.2 $M\Omega$                                               | 2. Insulation resistance b.siemens                                                  |
| b.1.2 Ω                                                       | 3. RTC c.ohm                                                                        |
| c.1.4 Ω                                                       | 4. Conductance $d.M\Omega$                                                          |
| d. 1.6 Ω                                                      | a. 1a,2-b,3-c,4-d                                                                   |
| ans:c                                                         | b.1-c,2-d,3-a,4-b                                                                   |
|                                                               | c.1-d,2-c,3-b,4-a                                                                   |
| 142.Two underground cables A and B, each has                  | d.all above                                                                         |
| a conductor resistance of 0.6 $\Omega$ and 0.8 $\Omega$ resp. | ans:b                                                                               |
| each has insulation resistance of 600 $M\Omega$ and           |                                                                                     |

## **UNIT IVA**

| Que. The distance occupied by one complete cycle of the wave is called its | <ul><li>B. direction only</li><li>C. both magnitude and direction</li><li>D. neither magnitude nor direction</li><li>Ans. C</li></ul> |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| A. time period B. wavelength                                               | Que. An alternating current of 50 Hz frequency and 100 A maximum value is given                                                       |
| C. velocity D. frequency                                                   | by<br>A. <i>i</i> = 200 sin628t                                                                                                       |
| Ans. A                                                                     | B. $i = 100 \sin 314t$                                                                                                                |
|                                                                            | C. $i = 100\sqrt{2} \sin 314t$                                                                                                        |
| Que. The rms value of a sine wave of peak                                  | D. $i = 100\sqrt{2} \sin 157t$                                                                                                        |
| value I <sub>m</sub> is given by                                           | Ans. B                                                                                                                                |
| A. $I_m/\sqrt{2}$                                                          | 1110. 2                                                                                                                               |
| B. I <sub>m</sub>                                                          | Que. An alternating current is given by the                                                                                           |
| C. I <sub>m</sub> /2                                                       | expression $i = 200 \sin(314t + \frac{\pi}{3})$ amperes.                                                                              |
| D. $I_m/\pi$<br>Ans. A                                                     | The maximum value and frequency of the                                                                                                |
| Alls. A                                                                    | current are                                                                                                                           |
| Que. The average value of a sine wave of                                   | A. 200 A, 50 Hz                                                                                                                       |
| maximum value I <sub>m</sub> over one cycle is                             | B. $100\sqrt{2}$ , 50 Hz                                                                                                              |
| A. $I_m/\pi$                                                               | C. 200 A, 100 Hz                                                                                                                      |
| B. $2I_m/\pi$                                                              | D. 200 A, 25 Hz                                                                                                                       |
| C. zero                                                                    | Ans. A                                                                                                                                |
| D. I <sub>m</sub> /2                                                       | Que. When two quantities are in quadrature,                                                                                           |
| Ans. C                                                                     | the phase angle between them will                                                                                                     |
| Que. The time period of a sinusoidal                                       | be                                                                                                                                    |
| waveform with 200 Hz frequency                                             | A. 45°                                                                                                                                |
| issecond.                                                                  | B. 90°                                                                                                                                |
| A. 0.05                                                                    | C. 135°                                                                                                                               |
| B. 0.005                                                                   | D. 60°                                                                                                                                |
| C. 0.0005                                                                  | Ans. B                                                                                                                                |
| D. 0.5                                                                     | Que. The ac system is preferred to dc system                                                                                          |
| Ans. B                                                                     | because                                                                                                                               |
| Que. The form factor of a sine wave is                                     | A. ac voltages can be easily changed in                                                                                               |
| A. 1.01                                                                    | magnitude                                                                                                                             |
| B. 1.11                                                                    | B. dc motors do not have fine speed control                                                                                           |
| C. 1.21                                                                    | C. high voltage ac transmission is less efficient                                                                                     |
| D. none of the above                                                       | D. dc voltage can not be used for domestic                                                                                            |
| Ans. B                                                                     | appliances<br>Ans. A                                                                                                                  |
|                                                                            | Alls. A                                                                                                                               |
| Que. A current is said to be alternating when it                           | Que. In ac system, we generate sine waveform                                                                                          |
| changes inA. magnitude only                                                | because                                                                                                                               |
| 71. magnitude omy                                                          | A. it can be easily drawn                                                                                                             |

| B. it produces least disturbance in electrical    |                                                |
|---------------------------------------------------|------------------------------------------------|
| circuits                                          | Que. An alternating voltage is given by $v =$  |
| C. it is nature's standard                        | 30 sin314t. The time taken by the voltage to   |
| D. other waves can not be produced easily         | reach 30 V for the first time is               |
| Ans. B                                            | A. 0.02 second                                 |
|                                                   | B. 0.1 second                                  |
| Quewill work only on dc supply.                   | C. 0.03 second                                 |
| A. electric lamp                                  | D. 0.005 second                                |
| B. refrigerator                                   | Ans. D                                         |
| C. electroplating                                 |                                                |
| D. heater                                         | Que. A sinusoidal current has a magnitude of 3 |
| Ans. C                                            | A at 120°. Its maximum value will be           |
|                                                   | A. √3 A                                        |
| Quewill produce ac voltage.                       |                                                |
| A. friction                                       | $B.\frac{\sqrt{3}}{2}A$                        |
| B. photoelectric effect                           | C. $2\sqrt{3}$ A                               |
| C. thermal energy                                 | D. 6 A                                         |
| D. crystal                                        | Ans. C                                         |
| Ans. D                                            |                                                |
| - 115. 2                                          | Que. We have assigned a frequency of 50Hz to   |
| Que. A coil is rotating in the uniform field of   | power system because it                        |
| an 8-pole generator. In one revolution of the     | A. can be easily obtained                      |
| coil, the number of cycles generated by the       | B. gives best result when used for operating   |
| voltage is                                        | both lights and machinery                      |
| A. one                                            | C. leads to easy calculations                  |
| B. two                                            | D. none of the above                           |
| C. four                                           | Ans. B                                         |
| D. eight                                          |                                                |
| Ans. C                                            | Que. An alternating voltage is given by $v =$  |
| Alls. C                                           | 100 sin314t volts. Its average value will      |
| Oug An alternating voltage is given by $n =$      | be                                             |
| Que. An alternating voltage is given by $v =$     | A. 70.7 V                                      |
| $20 \sin 157t$ . The frequency of the alternating | B. 50 V                                        |
| voltage is                                        | C. 63.7 V                                      |
| A. 50 Hz                                          | D. 100 V                                       |
| B. 25 Hz                                          | Ans. C                                         |
| C. 100 Hz                                         | 7 mo. C                                        |
| D. 75 Hz                                          | Que. An alternating current whose average      |
| Ans. B                                            | value is 1 A will produce1 A do                |
|                                                   | under similar conditions.                      |
| Que. A sine wave has a maximum value of 20        | A. less heat than                              |
| V. Its value at 135° is                           | B. more heat than                              |
| A. 10 V                                           | C. the same heat as                            |
| B. 14.14 V                                        | D. none of the above                           |
| C. 15 V                                           | Ans. B                                         |
| D. 5 V                                            | 7M13. D                                        |
| Ans. B                                            |                                                |

| Que. A sinusoidal alternating current has a maximum value of $I_m$ . Its average value will | Que. The direction of current in an ac circuit                                                                                                                                         |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| be                                                                                          | isisisisisisis_                                                                                                                                                                        |
| A. $\frac{Im}{\pi}$                                                                         | A. always in one direction                                                                                                                                                             |
| $\pi$                                                                                       | B. varying from time to time                                                                                                                                                           |
| $B.\frac{Im}{2\pi}$                                                                         | C. unpredictable                                                                                                                                                                       |
| C. $2\frac{lm}{\pi}$                                                                        | D. from positive to negative                                                                                                                                                           |
| D. none of the above                                                                        | Ans. B                                                                                                                                                                                 |
| Ans. C                                                                                      | Oue Consider the sinusaidal yeaves                                                                                                                                                     |
| Que. The area of a sinusoidal wave over a half-cycle is  A. max. value ÷ 2                  | Que. Consider the sinusoidal waves: $A\sin(\omega t + 30^{\circ})$ and $B\sin(\omega t - 60^{\circ})$ . The phase angle relationship between the two wavesA. B-wave lags A-wave by 90° |
| B. $2 \times max$ . value                                                                   | B. B-wave lags A-wave by 60°                                                                                                                                                           |
| C. $max. value \div \pi$                                                                    | C. B-wave lags A-wave by 30°                                                                                                                                                           |
| D. $max. value \div 2\pi$                                                                   | D. B-wave and A-wave are in phase                                                                                                                                                      |
| Ans. B                                                                                      | Ans. A                                                                                                                                                                                 |
| Que. An alternating voltage is given by $v =$                                               | Que. A sinusoidal voltage is expressed as $v =$                                                                                                                                        |
| 200 sin314t. Its rms value will be                                                          | $20 \sin(314.16t + \frac{\pi}{3})$ V. Its frequency and                                                                                                                                |
| A. 100 V                                                                                    | 3                                                                                                                                                                                      |
| B. 282.8 V                                                                                  | phase angle respectively are                                                                                                                                                           |
| C. 141.4 V                                                                                  | A. 314.16 Hz, 60°                                                                                                                                                                      |
| D. 121.4 V                                                                                  | B. 60Hz, 60°                                                                                                                                                                           |
| Ans. C                                                                                      | C. 50 Hz, 60°                                                                                                                                                                          |
|                                                                                             | D. $50 \text{ Hz}, -60^{\circ}$                                                                                                                                                        |
| Que. A sinusoidal voltage is represented as                                                 | Ans. C                                                                                                                                                                                 |
| $v = 141.4 \sin(314.18t - \frac{\pi}{2})$ . Its rms value of                                |                                                                                                                                                                                        |
| voltage, frequency and phase angle are                                                      | Que. A sinusoidal voltageV <sub>1</sub> leads another                                                                                                                                  |
| respectively                                                                                | sinusoidal voltage $V_2$ by $180^\circ$ .                                                                                                                                              |
| A. 141.42 V, 314.16 Hz, 90°                                                                 | Then                                                                                                                                                                                   |
| B. 100 V, 100 Hz, -90°                                                                      | A. voltageV <sub>2</sub> leads voltage V <sub>1</sub> by 180°                                                                                                                          |
| C. 87.92 V, 56 Hz, 90°                                                                      | B. both voltage have their zero values at the                                                                                                                                          |
| D. 100 V,50 Hz, -90°                                                                        | same time                                                                                                                                                                              |
| Ans. D                                                                                      | C. both voltages have their peak values at the                                                                                                                                         |
| Alls. D                                                                                     | same time                                                                                                                                                                              |
| One When two sinuscidal waves one 00% out                                                   | D. all of the above                                                                                                                                                                    |
| Que. When two sinusoidal waves are 90° out                                                  | Ans. D                                                                                                                                                                                 |
| of phase, then                                                                              |                                                                                                                                                                                        |
| A. both have their peak values at the same                                                  | Que. The rms value of an ac sinusoidal current                                                                                                                                         |
| instant                                                                                     | is 10 A. Its peak value is                                                                                                                                                             |
| B. both have their minimum values at the same                                               | A. 7.07 A                                                                                                                                                                              |
| instant                                                                                     | B. 14.14 A                                                                                                                                                                             |
| C. one has its peak value; while the other has                                              | C. 10 A                                                                                                                                                                                |
| zero value                                                                                  |                                                                                                                                                                                        |
| D. none of these                                                                            | D. 28.28 A                                                                                                                                                                             |
| Ans. C                                                                                      | Ans. B                                                                                                                                                                                 |

|                                                                       | C1                                                 |
|-----------------------------------------------------------------------|----------------------------------------------------|
| Que. If $A=10\angle 45^{\circ}$ and $B=5\angle 15^{\circ}$ , then the | D. $\frac{1}{2}$                                   |
| value of A/B will be                                                  | L                                                  |
| A. 50∠60°                                                             | Ans. A                                             |
| B. 2∠60°                                                              |                                                    |
| C. 2∠-30°                                                             | Que. An alternating current is given by $i =$      |
| D. 2∠30°                                                              | Im $sin\theta$ . The average value of squared wave |
| Ans. D                                                                | of this current over a complete cycle              |
| 1110. D                                                               | is                                                 |
| Que. When a phasor is multiplied by –j, it gets                       | A. $I^2_m/2$                                       |
| rotated throughin the                                                 | B. $I_m/\pi$                                       |
| counterclockwise direction.                                           | C. $2I_m/\pi$                                      |
| A. 90°                                                                | D. 2I <sub>m</sub>                                 |
| B. 180°                                                               | Ans. A                                             |
| C. 270°                                                               |                                                    |
| D. none of the above                                                  | Que. The form factor of a sinusoidal wave          |
| Ans. C                                                                | is                                                 |
| Tallo. C                                                              | A. 1.414                                           |
| Que. The rms value of sinusoidally varying                            | B. 1.11                                            |
| current is that of its average value.                                 | C. 2                                               |
| A. more than                                                          | D. 1.5                                             |
| B. less than                                                          | Ans. B                                             |
| C. same as                                                            |                                                    |
| D. none of the above                                                  | Que. The filament of a vacuum tube requires        |
| Ans. A                                                                | 0.4A dc to heat it. The rms value of ac            |
| 11115. 11                                                             | required is                                        |
| Que. Alternating voltages and currents are                            | $A. 0.4 \times \sqrt{2} A$                         |
| expressed in rms values because                                       | B. $0.4 \div 2 \text{ A}$                          |
| A. they can be easily determined                                      | C. $0.8 \div \sqrt{2} \text{ A}$                   |
| B. calculations become very simple                                    | D. 0.4 A                                           |
| C. they give comparison with dc                                       | Ans. D                                             |
| D. none of the above                                                  |                                                    |
| Ans. C                                                                | Que. A100 V peak ac is as effective                |
| 14115. C                                                              | asdc                                               |
| Que. The average value of $\sin^2\theta$ over a                       | A. 100 V                                           |
| complete cycle is                                                     | B. 50 V                                            |
| A. +1                                                                 | C. 70.7 V                                          |
| B1                                                                    | D. none of the above                               |
|                                                                       | Ans. C                                             |
| C. $\frac{1}{2}$                                                      |                                                    |
| D. zero                                                               | Que. The form factor of awave is 1.                |
| Ans. C                                                                | A. sinusoidal                                      |
|                                                                       | B. square                                          |
| Que. The average value of $\sin\theta$ over a                         | C. triangular                                      |
| complete cycle is                                                     | D. sawtooth                                        |
| A. zero                                                               | Ans. B                                             |
| B. +1                                                                 |                                                    |

| Que. Out of the followingwave is the peakiest.  A. sinusoidal  B. square  C. rectangualr                                                                            | Que. A heater is rated as 230V, 10KW, AC. The value of 230V refers toA. average voltage B. rms voltage C. peak voltage                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. triangular                                                                                                                                                       | D. none of the above                                                                                                                                            |
| Ans. D                                                                                                                                                              | Ans. B                                                                                                                                                          |
| Que. The peak factor of a sine waveform isA. 1.11 B. 1.414 C. 2 D. 1.5 Ans. B                                                                                       | Que. The peak value of a sine wave is 200V. Its average value isA. 127.4V B. 141.4V C. 282.8V D. 200V Ans. A                                                    |
| Que. When a 15V square wave is connected across a 50V ac voltmeter, it will read A. 15V  B. $15 \times \sqrt{2}$ V  C. $15/\sqrt{2}$ V  D. none of the above Ans. A | Que. The rms value of a sine wave is 100A. Its peak value isA. 70.7A B. 141.4A C. 150A D. 282.8A Ans. B                                                         |
| Que. The period of a wave is A. the same as frequency B. time required to complete one cycle C. expressed in amperes D. none of the above Ans. B                    | Que. The voltage of domestic supply is 220V. This figure represents A. mean value B. rms value C. peak value D. average value Ans. B                            |
| Que. The form factor is the ratio ofA. peak value to rms value B. rms value to average value C. average value to rms value D. none of the above Ans. B              | Que. The rms value and mean value is the same in the case ofA. traingular wave B. sine wave C. square wave D. half wave rectified sine wave Ans. C              |
| Que. The period of a sine wave is 1/50 seconds. Its frequency isA. 20 Hz B. 30 Hz C. 40 Hz D. 50 HZ Ans. D                                                          | Que. For the same peak value which of the following wave will have the highest rms value?  A. square wave  B. half wave rectified sine wave  C. triangular wave |

| D. sine wave                                         | A. 0.05 S                                     |
|------------------------------------------------------|-----------------------------------------------|
| Ans. A                                               | B. 0.005 S                                    |
|                                                      | C. 0.0005 S                                   |
| Que. For the same peak value which of the            | D. 0.5 S                                      |
| following wave will have the least mean              | Ans. B                                        |
| value?                                               |                                               |
| A. half wave rectified sine wave                     |                                               |
| B. triangular wave                                   |                                               |
| C. sine wave                                         |                                               |
| D. square wave                                       |                                               |
| Ans. A                                               |                                               |
|                                                      | Que. An ac voltage of 50 Hz has a maximum     |
| Que. For a sine wave with peak value $I_{max}$ , the | value of 50 V. Its value after 1/600 second   |
| rms value is                                         | after the instant the current is zero will    |
| A. 0.5I <sub>max</sub>                               | be                                            |
| B. 0.707I <sub>max</sub>                             | A. 5V                                         |
| C. 0.9I <sub>max</sub>                               | B. 12.5V                                      |
| D. 1.414I <sub>max</sub>                             | C. 25V                                        |
| Ans. B                                               | D. 43.8V                                      |
|                                                      | Ans. C                                        |
| Que. Form factor is the ratio of                     |                                               |
| A. average value/rms value                           | Que. For 200V rms value triangular wave, the  |
| B. average value/peak value                          | peak voltage will be                          |
| C. rms value/average value                           | A. 200V                                       |
| D. rms value/peak value                              | B. 222V                                       |
| Ans. C                                               | C. 282V                                       |
|                                                      | D. 346V                                       |
| Que. For a sine wave with peak value $E_{max}$ , the | Ans. D                                        |
| average value is                                     |                                               |
| A. $0.636E_{\text{max}}$                             | Que. The rms value of a half-wave rectified   |
| B. 0.707E <sub>max</sub>                             | current is 100 A. Its value for full-wave     |
| $C.~0.434E_{max}$                                    | rectification would beamperes.                |
| D. 1.414E <sub>max</sub>                             | A. 141.4                                      |
| Ans. A                                               | B. 200                                        |
|                                                      | C. $200/\pi$                                  |
| Que. The current in a circuit is given by: $i =$     | D. $40/\pi$                                   |
| 100 sin 314t amperes. The maximum value              | Ans. A                                        |
| and frequency of current are                         |                                               |
| A. $50\sqrt{2}$ A, 100 Hz                            | Que. The rms value of a sinusoidal ac current |
| B. $100\sqrt{2}$ A, $100$ Hz                         | is equal to its value at an angle of          |
| C. 100 A, 50 Hz                                      | degrees.                                      |
| D. 70.7 A, 50 Hz                                     | A. 90                                         |
| Ans. C                                               | B. 60                                         |
|                                                      | C. 45                                         |
| Que. For a frequency of 200 Hz, the time             | D. 30                                         |
| period will be                                       | Ans. C                                        |

|                                                 | C. 60 Hz                                          |
|-------------------------------------------------|---------------------------------------------------|
| Que. The rms value of alternating current is    | D. 50 Hz                                          |
| given by steady dc current which when           | Ans. D                                            |
| flowing through a given circuit for a given     |                                                   |
| time produces                                   | Que. The rms value of half wave rectified sine    |
| A. the more heat than produced by ac when       | wave is 200V. The rms value of full wave          |
| flowing through the same circuit                | rectified ac will be                              |
| B. the same heat as produced by ac when         | A. 282.8V                                         |
| flowing through the same circuit                | B. 141.4V                                         |
| C. the less heat than produced by ac flowing    | C. 111V                                           |
| through the same circuit                        | D. 100V                                           |
| D. none of the above                            | Ans. A                                            |
| Ans. B                                          | 71113, 71                                         |
| Alls. D                                         | Que. The negative maximum of a cosine wave        |
| Que. The square waveform of current has         | occurs at                                         |
| - ·                                             | A. 30°                                            |
| following relation between rms value and        |                                                   |
| average value:                                  | B. 45°                                            |
| A. rms value is equal to average value          | C. 90°                                            |
| B. rms value of current is greater than average | D. 180°                                           |
| value                                           | Ans. D                                            |
| C. rms value of current is less than average    |                                                   |
| value                                           | Que. The rms value of pure cosine function        |
| D. none of the above                            | 18                                                |
| Ans. A                                          | A. 0.5 of peak value                              |
|                                                 | B. 0.707 of peak value                            |
| Que. If a sinusoidal wave has frequency of 50   | C. same as peak value                             |
| Hz with 30A rms current, which of the           | D. zero                                           |
| following equation represents the wave?         | Ans. B                                            |
| A. 42.42 sin 314 <i>t</i>                       |                                                   |
| B. 60 sin25t                                    |                                                   |
| C. 30 sin 50 <i>t</i>                           | Que. An alternating voltage is given in volts     |
| D. 84.84 sin25t                                 | by expression $v = 326 \sin 314t$ . Its rms value |
| Ans. A                                          | and frequency are                                 |
|                                                 | A. 230V,50 Hz                                     |
| Que. Which of the following waves has the       | B. 230V,100 Hz                                    |
| highest value of peak factor?                   | C. 326V,50 Hz                                     |
| A. square wave                                  | D. 326V,100 Hz                                    |
| B. sine wave                                    | Ans. A                                            |
| C. half wave rectified sine wave                |                                                   |
| D. triangular wave                              | Que. According to which of the alternating        |
| Ans. C                                          | current values in the cross sectional area of a   |
| <del>C</del>                                    | conductor with regard to the heating effect is    |
| Que. The frequency of domestic power supply     | selected?                                         |
| in India is                                     | A. peak value                                     |
| A. 200 Hz                                       | B. half peak value                                |
| B. 100 Hz                                       | C. average value                                  |
| D. 100 HZ                                       | C. 4101450 14140                                  |

| D. rms value                                 | C. unsymmetrical part of the waveform                     |
|----------------------------------------------|-----------------------------------------------------------|
| Ans. D                                       | D. first two cycles                                       |
|                                              | Ans. A                                                    |
| Que. The frequency of an alternating current |                                                           |
| is                                           | Que. A constant current of 2.8A exists in a               |
| A. the speed with which the alternator runs  | resistor. The rms value of current is                     |
| B. the number of cycles generated in one     | A. 2.8 A                                                  |
| minute                                       | B. about 2 A                                              |
| C. the number of waves passing through a     | C. 1.4 A                                                  |
| point in one second                          | D. undefined                                              |
| D. the number of electrons passing through a | Ans. A                                                    |
| point in one second                          |                                                           |
| Ans. C                                       | Que. An alternating current is represented as             |
|                                              | $i = 70.7 \sin(520t + \frac{\pi}{6})$ . The frequency and |
| Que. The equation of 50 Hz current sine wave | <b>U</b>                                                  |
| having rms value of 60 A is                  | rms value of the current are                              |
| A. 60 sin 25 <i>t</i>                        | A. 82.76 Hz, 50 A                                         |
| B. 60 sin 50 <i>t</i>                        | B. 41.38 Hz, 25 A                                         |
| C. 84.84 sin314t                             | C. 41.38 Hz, 50 A                                         |
| D. 42.42 sin314t.                            | D. 82.76 Hz, 25 A                                         |
| Ans. C                                       | Ans. A                                                    |
| Alls. C                                      |                                                           |
| Over The direction of exement in an ex-      | Que. The time period or periodic time T of an             |
| Que. The direction of current in an ac       | alternating quantity is the time taken in                 |
| circuit                                      | seconds to complete                                       |
| A. is from positive to negative              | A. one cycle                                              |
| B. is always in one direction                | B. alternation                                            |
| C. varies from instant to instant            | C. none of the above                                      |
| D. can not be determined                     | D. Half cycle                                             |
| Ans. C                                       | Ans. A                                                    |
|                                              |                                                           |
| Que. The angular frequency of an alternating | Que. The time period of an alternating quantity           |
| quantity is a mathematical quantity obtained | is 0.02 second.Its frequency will be                      |
| by multiplying the frequency "f" of the      | A. 25 Hz                                                  |
| alternating quantity by a factor             | B. 50 Hz                                                  |
| A. $\frac{\pi}{2}$                           | C. 100 Hz                                                 |
| Β. π                                         | D. 0.02 Hz                                                |
| C. 2π                                        | Ans. B                                                    |
| D. 4π                                        | 7 Hio. <i>D</i>                                           |
| Ans. C                                       | Que. The size (cross-sectional area) of a                 |
| Alls. C                                      | conductor, with regard to the heating effect, is          |
|                                              | determined on the basis of value of                       |
| Oue The everege value of an unaummetrical    | current to be carried by it                               |
| Que. The average value of an unsymmetrical   | · · · · · · · · · · · · · · · · · · ·                     |
| alternating quantity is calculated over      | A. average value<br>B. peak value                         |
| the                                          | <del>-</del>                                              |
| A. whole cycle                               | C. rms value                                              |
| B. half cycle                                | D. peak to peak value                                     |

| Ans. C                                        | B. time                                         |
|-----------------------------------------------|-------------------------------------------------|
|                                               | C. time period                                  |
| Que. The form factor for dc supply voltage is | D. all above                                    |
| always                                        | Ans. C                                          |
| A. zero                                       |                                                 |
| B. unity                                      |                                                 |
| C. infinity                                   |                                                 |
| D. any value between 0 and 1                  |                                                 |
| Ans. B                                        |                                                 |
|                                               | Que.                                            |
| Que. The varying alternating                  |                                                 |
| quantity can be represented as phasor.        | Time                                            |
| A. circular                                   |                                                 |
| B. sinusoidally                               | Santhatas                                       |
| C. rectangular                                |                                                 |
| D. triagular                                  | В                                               |
| Ans. B                                        | In the above figure, the phase quantity at A is |
| Que. The phasors are assumed to be rotated in | A. T                                            |
| direction.                                    | B. T/2                                          |
| A. clockwise                                  | C. T/3                                          |
| B. anticlockwise                              | D. T/4                                          |
| C. circular                                   | Ans. D                                          |
| D. all above                                  | THIS. D                                         |
| Ans. B                                        | Que.                                            |
|                                               | I A                                             |
| Que. In practice, alternating quantities are  |                                                 |
| represented by their values                   | 7me                                             |
| A. rms                                        | Standardon                                      |
| B. average                                    |                                                 |
| C. rectangular                                |                                                 |
| D. polar                                      | In the above figure, the phase quantity at B is |
| Ans. A                                        | ————                                            |
| Que. Alternating quantities of                | A. T                                            |
| frequencies can be represented on same phasor | B. T/2                                          |
| diagram.                                      | C. 3T/4                                         |
| A. Same                                       | D. T/4                                          |
| B. Different                                  | Ans. C                                          |
| C. multiple                                   |                                                 |
| D. all above                                  | Que. When phase of an alternating quantity is   |
| Ans. A                                        | positive it means that quantity has some        |
| 1 1110, 11                                    | instantaneous value at t=0                      |
| Que. The phase of alternating quantity at any | A. zero                                         |
| particular instant is the fraction of         | B. positive                                     |
| A. phase                                      | C. negative                                     |
| 11. pillioc                                   | D. none of the above                            |
|                                               |                                                 |

| Ans. B                                                                                                                                                                          |                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Que. When phase of an alternating quantity is negative it means that quantity has some instantaneous value at t=0  A. zero  B. positive C. negative D. none of the above Ans. C | Que. When phase difference between the two alternating quantities is, the two quantities are said to be in phase.  A. one B. unity C. zero D. $\pi/2$ Ans. C |
| Que. The difference between the of two                                                                                                                                          | Que. If $v = Vm Sin \omega tand i = Im Sin (\omega t - \Phi)$ , the 'v' is said to 'i' by angle $\Phi$ A. in phase                                           |
| alternating quantities is called the phase                                                                                                                                      | B. lagging                                                                                                                                                   |
| difference.                                                                                                                                                                     | C. leading                                                                                                                                                   |
| A. time                                                                                                                                                                         | D. all above                                                                                                                                                 |
| B. phase angle                                                                                                                                                                  | Ans. C                                                                                                                                                       |
| C. Lengths                                                                                                                                                                      |                                                                                                                                                              |
| D. both a and b                                                                                                                                                                 |                                                                                                                                                              |
| Ans. B                                                                                                                                                                          | Que. If $v = Vm Sin \omega t$ and $i = Im Sin (\omega t + \Phi)$ ,                                                                                           |
|                                                                                                                                                                                 | the 'i' is said to 'v' by angle $\Phi$                                                                                                                       |
| Que. The difference between the phase of two                                                                                                                                    | A. in phase                                                                                                                                                  |
| alternating quantities is called the                                                                                                                                            | B. lagging                                                                                                                                                   |
| A. phase difference                                                                                                                                                             | C. leading                                                                                                                                                   |
| B. sinedifference                                                                                                                                                               | D. all above                                                                                                                                                 |
| C. length difference                                                                                                                                                            | Ans. C                                                                                                                                                       |
| D. none of the above                                                                                                                                                            | One If we Ver Sin ottend : - In Sin (at   A)                                                                                                                 |
| Ans. A                                                                                                                                                                          | Que. If $v = Vm$ Sin $\omega$ tand $i = Im$ Sin $(\omega t + \Phi)$ ,                                                                                        |
| Que. When phase difference between the two                                                                                                                                      | the 'v' is said to 'i' by angle $\Phi$ A. in phase                                                                                                           |
| alternating quantities is zero, the two                                                                                                                                         | B. lag                                                                                                                                                       |
| quantities are said to be in                                                                                                                                                    | C. lead                                                                                                                                                      |
| A. tandom                                                                                                                                                                       | D. all above                                                                                                                                                 |
| B. length                                                                                                                                                                       | Ans. B                                                                                                                                                       |
| C. phase                                                                                                                                                                        |                                                                                                                                                              |
| D. time                                                                                                                                                                         | Que. If $v = Vm Sin \omega t$ and $i = Im Sin \omega t$ , the 'i'                                                                                            |
| Ans. C                                                                                                                                                                          | is said to 'v' by angle $\Phi$                                                                                                                               |
|                                                                                                                                                                                 | A. in phase                                                                                                                                                  |
| Que. When between the two                                                                                                                                                       | B. lag                                                                                                                                                       |
| alternating quantities is zero, the two                                                                                                                                         | C. lead                                                                                                                                                      |
| quantities are said to be in phase.                                                                                                                                             | D. all above                                                                                                                                                 |
| A. time difference                                                                                                                                                              | Ans. A                                                                                                                                                       |
| B. length difference                                                                                                                                                            |                                                                                                                                                              |
| C. phase difference                                                                                                                                                             | Que. With respect to reference, plus sign of                                                                                                                 |
| D. none of the above                                                                                                                                                            | angle indicates                                                                                                                                              |
| Ans. C                                                                                                                                                                          | A. leading                                                                                                                                                   |

| B. lagging C. inphase D. none of the above Ans. A                                                                                                                                                                 | B. frequency C. sign D. shape Ans. B                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Que. With respect to reference, minus sign of angle indicatesA. leading B. lagging C. inphase D. none of the above Ans. B                                                                                         | Que. The lagging and leading word is relative to theA. base B. range C. reference D. angle Ans. C                                                                  |
| Que. With respect to reference, sign of angle indicates lead A. division B. plus C. minus D. dot Ans. B                                                                                                           | Que. In purely circuit, the current flowing and voltage applied are in phase with each other.  A. resistive B. inductive C. capacitive D. none of the above Ans. A |
| Que. With respect to reference, sign of angle indicates lag. A. division B. plus C. minus D. dot Ans. C                                                                                                           | Que. In purely resistive circuit, the current and voltage applied are in with each other.  A. opposition  B. phase  C. direction  D. line  Ans. B                  |
| Que. The diagram in which different sinusoidal alternating quantities of the same frequency, are represented by individual phasors indicating exact phase relationship is called                                  | Que. In purely circuit, current lags voltage by 90 degrees.  A. resistive B. inductive C. capacitive D. none of the above Ans. B                                   |
| D. picture Ans. C  Que. The diagram in which different sinusoidal alternating quantities of the same, are represented by individual phasors indicating exact phase relationship is called phasor diagram. A. time | Que. In purely Inductive circuit, currentvoltage by 90 degrees.  A. leads B. lags C. in phase D. all above Ans. B                                                  |

| Que. In purely Inductive circuit, current lags | Que. Inductive reactance is measured in          |
|------------------------------------------------|--------------------------------------------------|
| voltage by degrees.                            |                                                  |
| A. 30                                          | A. Farad                                         |
| B. 60                                          | B. Henry                                         |
| C. 90                                          | C. Ohm                                           |
| D. 120                                         | D. Joule                                         |
| Ans. C                                         | Ans. C                                           |
| Que. The inductance offers reactance to        | Que. Inductive reactance depends on              |
| DC                                             | of applied voltage                               |
| A. high                                        | A. phase                                         |
| B. low                                         | B. sign                                          |
| C. zero                                        | C. frequency                                     |
| D. none of the above                           | D. speed                                         |
| Ans. C                                         | Ans. C                                           |
| Que. The offers zero reactance to              | Que. Inductive reactance is                      |
| DC                                             | frequency.                                       |
| A. resistance                                  | A. inversely proportional to                     |
| B. inductance                                  | B. directly proportional to                      |
| C. permeance                                   | C. indepedent of                                 |
| D. none of the above                           | C. none of above                                 |
| Ans. B                                         | Ans. B                                           |
| Que. The inductance offers zero to             | Que. Inductive reactance is directly             |
| DC                                             | proportional to                                  |
| A. resistance                                  | A. time                                          |
| B. capacitance                                 | B. phase                                         |
| C. reactance                                   | C. frequency                                     |
| D. permeance                                   | D. phase difference                              |
| Ans. C                                         | Ans. C                                           |
| Que. Pure never consumes power                 | Que. In purely capacitive circuit, current       |
| A. resistor                                    | voltage by 90 degrees.                           |
| B. inductor                                    | A. lags                                          |
| C. starter                                     | B. leads                                         |
| D. circuit                                     | C. in phase                                      |
| Ans. B                                         | D. all above                                     |
|                                                | Ans. B                                           |
| Que. Inductive reactance is given by           |                                                  |
| A. $X_L = \omega L$                            | Que. In purely capacitive circuit, current leads |
| B. $X_L=2\pi L$                                | voltageby degrees.                               |
| C. $X_L = \Phi L$                              | A. 30                                            |
| D. $X_L = \omega C$                            | B. 60                                            |
| Ans. A                                         | C. 90                                            |

| D. 120<br>Ans. C                                                                                                                                    | C. $X_C=1/\Phi C$<br>D. $X_C=2\pi f L$<br>Ans. A                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Que. The capacitor offers reactance to DC. A. high B. low C. zero D. none of the above Ans. A                                                       | Queis given by $X_C=1/\omega L$<br>A. resistance<br>B. inductance<br>C. inductive reactance<br>D. capacitive reactance<br>Ans. D      |
| Que. The offers infinite reactance to DC A. resistance B. permeance C. capacitance D. none of the above Ans. C                                      | Que. Capacitive reactance is measured in  A. farads B. henrys C. ohms D. joules Ans. C                                                |
| Que. The capacitance offers infinite to DC A. resistance B. capacitance C. reactance D. permeance Ans. C                                            | Que. Capacitive reactance is to frequency.  A. inversely proportional  B. directly proportional  C. both  C. none of above  Ans. A    |
| Que. The power curve of pure capacitor is  curve of frequency double than that of applied voltage A. sine B. square C. tringular D. sawtooth Ans. A | Que. Capacitive reactance is inversly proportional to  A. time B. phase C. frequency D. phase difference Ans. C                       |
| Que. Pure never consumes power A. resistor B. capacitor C. starter D. circuit Ans. B                                                                | Que. A certain inductor has reactance of $4k\Omega$ at $5kHz$ . Its reactance at $15kHz$ is $k\Omega$ . A. 8 B. 10 C. 12 D. 20 Ans. C |
| Que. Inductive reactance is given by<br>A. $X_C=1/\omega C$<br>B. $X_C=1/2\pi C$                                                                    | Que. The square of aj operator<br>A. can never be negative<br>B. can never be positive                                                |

| C. could be either positive or negative D. is equal to j Ans. B  Que. A complex number A. is the same as imaginary number B. has real and imaginary part C. is negative number                                                           | Que. Consider the sinusoidal waves: A sin (ωt+30) and B cos(ωt-60). The phase angle relationship between two waves is:  A. B wave lags A wave by 90 degrees B. B wave lags A wave by 60 degrees C. B wave lags A wave by 30 degrees D. B wave and A wave are in phase Ans. D |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. is merely a technical term                                                                                                                                                                                                            | . mo. 2                                                                                                                                                                                                                                                                      |
| Ans. B  Que. The sum of (3+j6) and (-3-j6) is A. 0+j0                                                                                                                                                                                    | Que. Thereactance of L Henryinductance connected to an AC source of frequency <i>f</i> is ohm.  A. <i>f</i> L                                                                                                                                                                |
| B. 6+j12                                                                                                                                                                                                                                 | B. πfL                                                                                                                                                                                                                                                                       |
| C6-j12                                                                                                                                                                                                                                   | C. 2 πfL                                                                                                                                                                                                                                                                     |
| D. 0-j12                                                                                                                                                                                                                                 | D. all above                                                                                                                                                                                                                                                                 |
| Ans. A                                                                                                                                                                                                                                   | Ans. C                                                                                                                                                                                                                                                                       |
| Que. A sinusoidal voltageis represented as: v = 141.4 sin(314.18t-π/2). Its rms value of voltage, frequency and phase angle are respectively A. 141.42V, 314.16 Hz, 90 degrees B. 100V, 50 Hz, -90 degrees C. 87.92V, 56 Hz, 90 degrees  | Que. When pure inductance is connected to an AC sources, the voltage to the current by A. lags, 90 degrees B. leads, 90 degrees C. lags, 45 degrees D. leads, 45 degrees                                                                                                     |
| D. 200V, 50 Hz, -90 degrees<br>Ans. B                                                                                                                                                                                                    | Ans. B                                                                                                                                                                                                                                                                       |
| Que. When two sinusoidal waves are 90 degrees out of phase, then  A. both have their peak values at the same time  B. both have their minimum values at the same time  C. one has its peak value, other has zero value  D. none of these | Que. When a phasor is multiplied by j and –j, it is rotated through degrees in the anticlockwise direction respectively.  A. 90,270 B. 90,90 C. 90,180 D. 270,90 Ans. A                                                                                                      |
| Ans. C                                                                                                                                                                                                                                   | Que. The p. f. of purely resistive circuit is                                                                                                                                                                                                                                |
| Que. The direction of current in an AC circuit is A. always in one direction B. varyingtime to time periodically C. unpredictable D. from positive to negative Ans. B                                                                    | A. zero B. unity C. lagging D. leading Ans. B  Que. If $e_1 = 100 \sin(2\pi f)$ and $e_2 = 100 \sin(2\pi f - \Phi)$ , then                                                                                                                                                   |

| A. $e_1$ lags $e_2$ by $\Phi$<br>B. $e_1$ leads $e_2$ by $\Phi$ | Ans. A                                                      |
|-----------------------------------------------------------------|-------------------------------------------------------------|
| C. $e_2$ lags $e_1$ by $\Phi$                                   | Que. A constant current of 2.8 A exists in a                |
| D. none of the above                                            |                                                             |
|                                                                 | resistor. The rms value of current is                       |
| Ans. C                                                          | A. 2.8 A                                                    |
|                                                                 | B. 2 A                                                      |
| Que. The average power in a purely inductive                    | C. 1.4 A                                                    |
| or capacitive circuit over a cycle                              | D. undefined                                                |
| A. depends on $X_{LOT} X_{C}$                                   | Ans. A                                                      |
| B. is negative                                                  |                                                             |
| C. is zero                                                      | Que. The power factor of an ordinary bulb is                |
| D. is positive                                                  |                                                             |
| Ans. C                                                          | A. zero                                                     |
|                                                                 | B. unity                                                    |
| Que. Inductive reactance of an AC circuit                       | C. more than unity                                          |
| increases with                                                  | D. less than unity                                          |
| A. increase in frequency                                        | Ans. B                                                      |
| B. increase in resistance                                       |                                                             |
| C. decrease in resistance                                       | Que. When aphasor is multiplied by -j, it is                |
| D. decrease in frequency                                        | rotated through in counter-clockwise                        |
| Ans. A                                                          | direction                                                   |
|                                                                 | A. 90                                                       |
| Que. When the two quantities are in                             | B. 180                                                      |
| quadrature, the phase angle between them will                   | C. 270                                                      |
| be degrees.                                                     | D. none of the above                                        |
| A. 45                                                           | Ans. C                                                      |
| B. 90                                                           | This. C                                                     |
| C. 135                                                          | Que. If the phasor is multiplied by j, then                 |
| D. 60                                                           | A. only its magnitude changes                               |
| Ans. B                                                          | B. only its direction changes                               |
| Alls. D                                                         | · · · · · · · · · · · · · · · · · · ·                       |
| Oue The phase difference between two                            | C. both magnitude and direction change D. none of the above |
| Que. The phase difference between two                           |                                                             |
| waveforms can be compared when they                             | Ans. B                                                      |
| A. have the same frequency                                      | 0 1 1 1 1 4.777                                             |
| B. have the same peak value                                     | Que. In the complex number 4+j7, 7 is called                |
| C. have the same effective value                                | the component                                               |
| D. are sinusoidal                                               | A. real                                                     |
| Ans. A                                                          | B. imaginary                                                |
|                                                                 | C. in-phase                                                 |
| Que. If two sinusoids of the same frequency                     | D. none of the above                                        |
| but of different amplitude and phase difference                 | Ans. D                                                      |
| are added, the resultant is a                                   |                                                             |
| A. sinusoid of same frequency                                   | Que. The reciprocal of a complex number is                  |
| B. sinusoid of double the original frequency                    | a                                                           |
| C. sinusoid of half the original frequency                      | A. complex number                                           |
| D. non-sinusoid                                                 | B. real component only                                      |

| C. quadrature component only D. none of above      | <ul><li>A. a complex number</li><li>B. in-phase component only</li></ul> |
|----------------------------------------------------|--------------------------------------------------------------------------|
| Ans. A                                             | C. quadrature component only                                             |
|                                                    | D. none of the above                                                     |
| Que. If two complex numbers are equal, then        | Ans. C                                                                   |
| A. only their magnitudes will be equal             | Que. The reciprocal of j is                                              |
| B. only their angles will be equal                 | A. j                                                                     |
| C. their in phase and quadrature components        | Bj                                                                       |
| will be separately equal                           | C. jxj                                                                   |
| D. none of above                                   | D. none of the above                                                     |
| Ans. C                                             | Ans. B                                                                   |
| Que. A phasor 2\(\angle 180\) can be expressed     | Que. Two waves of same frequency have                                    |
| as                                                 | opposite phase when the phase angle between                              |
| A. j2                                              | them is degrees                                                          |
| Bj2                                                | A. 360                                                                   |
| C2                                                 | B. 180                                                                   |
| D. 2                                               | C. 90                                                                    |
| Ans. C                                             | D. 0                                                                     |
|                                                    | Ans. B                                                                   |
| Que. A current of (3+j4) A is flowing through      |                                                                          |
| a circuit. The magnitude of current is             | Que. The power consumed in a circuit element                             |
| A. 7 A                                             | will be least when the phase difference                                  |
| B. 5 A                                             | between the current and voltageis                                        |
| C. 1 A                                             | degrees.                                                                 |
| D. 1.33 A                                          | A. approx.180                                                            |
| Ans. B                                             | B. approx. 90                                                            |
|                                                    | C. approx. 60                                                            |
| Que. The voltage applied in a circuit is given     | D. approx. 0                                                             |
| by 100 \( \alpha 60 \) volts. It can be written as | Ans. B                                                                   |
| A. 100∠-60                                         |                                                                          |
| B. 100∠240                                         | Que. Two sinusoidal currents are given by $i_1$ =                        |
| C. 100∠-300                                        | $100\sin(\omega t + \pi/3)$ and $i_2 = 150\sin(\omega t - \pi/4)$ . The  |
| D. none of the above                               | phase difference between them is                                         |
| Ans. C                                             | degrees                                                                  |
|                                                    | A. 15                                                                    |
| Que. The conjugate of -4+j3 is                     | B. 50                                                                    |
| A. 4-j3                                            | C. 60                                                                    |
| B4-j3                                              | D. 105                                                                   |
| C. 4+j3                                            | Ans. D                                                                   |
| D. none of the above                               |                                                                          |
| Ans. B                                             | Que. Capacitive reactance is more when                                   |
|                                                    | A. capacitance is less and frequency of supply                           |
| Que. The difference of two conjugate number        | is less                                                                  |
| results in                                         |                                                                          |

| B. capacitance is less and frequency of supply is more | D. current is in phase with the voltage Ans. B            |
|--------------------------------------------------------|-----------------------------------------------------------|
| C. capacitance is more and frequency of                |                                                           |
| supply is less                                         | Que. A phasor is                                          |
| D. capacitance is more and frequency of                | A. a line which represents the magnitude and              |
| supply is more                                         | phase of an alternating quantity                          |
| Ans. A                                                 | B. a line which represents the magnitude and              |
|                                                        | direction of an alternating quantity                      |
| Que. Pure inductive circuit                            | C. acoloured tag or band for distinction                  |
| A. consumes some power on average                      | between different phases of a 3 phase supply              |
| B. does not take power at all from lines               | D. an instrument used for measuring phases of             |
| C. takes power from the line during some part          | an unbalanced 3 phase load                                |
| of cycle and returns back during other part of         | Ans. B                                                    |
| cycle                                                  |                                                           |
| D. none of the above                                   | Que. Ohm is the unit of all the following                 |
| Ans. C                                                 | except                                                    |
|                                                        | A. inductive reactance                                    |
| Que. Power factor of the following circuit will        | B. capacitive reactance                                   |
| be zero                                                | C. resistance                                             |
| A. resistive                                           | D. capacitance                                            |
| B. pureinductive                                       | Ans. D                                                    |
| C. pure capacitive                                     |                                                           |
| D. both (B) and (C)                                    | Que. For a purely resistive circuit the                   |
| Ans. D                                                 | following statement is correct                            |
|                                                        | A. work done is zero                                      |
| Que. Power factor of the following circuit will        | B. power consumed is zero                                 |
| be unity                                               | C. heat produced is zero                                  |
| A. resistive                                           | D. power factor is unity                                  |
| B. pureinductive                                       | Ans. D                                                    |
| C. pure capacitive                                     |                                                           |
| D. both (B) and (C)                                    | Que. For purely inductive circuit if $v = Vm \sin \theta$ |
| Ans. A                                                 | (ωt) then equation of current is                          |
|                                                        | A. $i = \text{Im sin } (\omega t - \pi/2)$                |
| Que. In pure resistive circuit                         | B. $i = \text{Im sin} (\omega t + \pi/2)$                 |
| A. current lags the voltageby 90 degrees               | C. $i = \text{Im sin } (\omega t - \pi)$                  |
| B. current leads the voltageby 90 degrees              | D. $i = \text{Im sin } (\omega t + \pi)$                  |
| C. current can lead or lagthe voltageby 90             | Ans. A                                                    |
| degrees                                                |                                                           |
| D. current is in phase with the voltage                | Que. For purely capacitive circuit if $v = Vm$            |
| Ans. D                                                 | $\sin(\omega t)$ then equation of current is              |
|                                                        | A. $i = \text{Im sin } (\omega t - \pi/2)$                |
| Que. In pure inductive circuit                         | B. $i = \text{Im sin } (\omega t + \pi/2)$                |
| A. current lags the voltageby 90 degrees               | C. $i = \text{Im sin } (\omega t - \pi)$                  |
| B. current leads the voltageby 90 degrees              | D. $i = \text{Im sin } (\omega t + \pi)$                  |
| C. current can lead or lagthe voltageby 90             | Ans. B                                                    |
| degrees                                                |                                                           |

Que. For purely resistive circuit if  $v = Vm \sin \theta$ Que. Which of the following statements pertains to resistor only  $(\omega t)$  then equation of current is A.  $i = Im \sin(\omega t - \pi/2)$ A. can dissipate considerable amount of power B.  $i = \text{Im sin } (\omega t + \pi/2)$ B. can act as energy storage device C. connecting them in parallel increases the C.  $i = Im \sin(\omega t)$ D.  $i = \text{Im sin } (\omega t + \pi)$ total value Ans. C D. opposes sudden change in voltage Ans. A Que. A sinusoidal voltageV<sub>1</sub> leads another sinusoidal voltage V<sub>2</sub> by 180 degrees. Then Que. The length of a phasor in a phasor diagram normally represents the ...... A. voltageV<sub>2</sub> leads voltageV<sub>1</sub> by 180 degrees value of the alternating quantity B. both voltagehave their zero values at the A. rms or effective B. average same time C. both voltagehave their peak values at the C. peak same time D. none of these D. all of above Ans. A Ans. D Que. The two quantities are said to be in phase Que. If  $A = 10\angle 45$  and  $B = 5\angle 15$ , then the with each other when A. the phase difference between two quantities value of A/B will be\_\_\_\_ A. 50∠60 is zero degree or radian B. each of them pass through zero values at the B.  $2 \le 60$ C. 2∠-30 same instant and rise in the same direction D.  $2 \le 30$ C. each of them pass through zero values at the Ans. D same instant but rises in the opposite directions Que. The active power of AC circuit is given D. either (a) or (b) Ans. D by A. VI sin Φ B.  $I^2X_L$ Que. The phase difference between the two  $C. I^2R$ waveforms can be compared only when they D.  $I^2Z$ A. have the same frequency B. have the same peak value Ans. C C. have the same effective value D. are sinusoidal Que. Inductance of coil\_\_\_\_ A. is unaffected by the supply frequency Ans. A B. decreses with the increase in supply frequency Que. The phasor diagram for alternating C. increases with the increase in supply quantities can be drawn if they have ....... frequency waves D. becomes zero with the increase in supply A. rectangular frequency B. sinusoidal Ans. A C. triangular D. any of these

Ans. B

Que. Which of the following statements associated with purely resistive circuits is correct?

A. PF is unity

B. Power consumed is zero

C. Heat produced is zero

D. PF is zero

Ans. A

Que. Average power in a pure resistive circuit is equal to

A. zero

B. product of average values of current and voltage

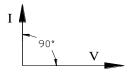
C. product of peak values of current and voltage

D. product of rms or effective values of current and voltage

Ans. D

Que. The power factor of an ac circuit is equal to

A. tangent of the phase angle


B. sine of phase angle

C. unity for a resistive circuit

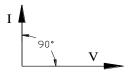
D. unity for a reactive circuit

Ans. C

Que. The phasor diagram of voltage and current considering phasors are rotates anticlockwise direction is of



A. pure resistance


B. pure inductance

C. pure capacitance

D. pure capacitance and pure inductance

Ans. C

Que. The phasor diagram of voltage and current considering phasors are rotates clockwise direction is of



A. Pure resistance

B. pure inductance

C. pure capacitance

D. pure capacitance and pure inductance

Ans. B

Que. The power factor of an ac circuit lies between

A. 0 and 1

B. -1 and 1

C. 0 and -1

D. none of these

Ans. A

## **UNIT IVB**

Que. The period of a certain sine wave is 10 milliseconds. Its frequency is\_\_\_\_\_

A. 10 MHz

B. 10 KHz

C. 10 Hz

D. 100 Hz

Ans. D

Que. The rms value of a sine wave of maximum value 10A equals a dc current of \_\_\_\_\_ampere.

A. 7.07

B. 6.37

C. 5

D. 5.77

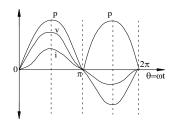
Ans. A

Que. The rms value of a sinusoidal voltage with peak-to-peak value of 240 V is \_\_\_\_\_V.

| A. 84.84                                                                    | C. 100V                                                       |
|-----------------------------------------------------------------------------|---------------------------------------------------------------|
| B. 77.82                                                                    | D. 173.2V                                                     |
| C. 94.68                                                                    | Ans. C                                                        |
| D. 89.15                                                                    | 71110.                                                        |
| Ans. A                                                                      | Que. How much rms current does a 300W,                        |
| Alls, A                                                                     | 200V bulb take from the 200V, 50Hz power                      |
|                                                                             | <u>-</u>                                                      |
| O The medical and a sine area in 400 V                                      | line?                                                         |
| Que. The peak value of a sine wave is 400 V.                                | A. 0.5 A                                                      |
| Its average value isV.                                                      | B. 1.5 A                                                      |
| A. 254.6                                                                    | C. 2 A                                                        |
| B. 282.6                                                                    | D. 3 A                                                        |
| C. 400                                                                      | Ans. B                                                        |
| D. 565.5                                                                    |                                                               |
| Ans. A                                                                      | Que. Polar form of $v = 100 \sin(100\pi t + \pi/6)$           |
|                                                                             | Volt is                                                       |
| Que. The average value of the current $i =$                                 | A. 61.2371+j35.3553                                           |
| $200 \sin t \text{ from } t = 0 \text{ to } t = \frac{\pi}{2} \text{ is } $ | B. 70.7106∠30                                                 |
| Α. 400 π                                                                    | C. 61.2371∠35.3553                                            |
|                                                                             | D. 70.710+ j30                                                |
| B. $\frac{400}{\pi}$                                                        | Ans. B                                                        |
| $C.\frac{1}{400}$                                                           |                                                               |
| 400<br>- #                                                                  | Que. Rectangular form of V= 100                               |
| D. $\frac{\pi}{400}$                                                        | $\sin(100\pi t + \pi/6)$ Volt is                              |
| Ans. B                                                                      | A. 61.2371+j35.3553                                           |
|                                                                             | B. 70.7106 \( \) 30                                           |
| Que. An alternating current is given by $i =$                               | C. 61.2371 \( \alpha 35.3553 \)                               |
| 10 sin 314t. The time taken to generate two                                 |                                                               |
| cycles of current is                                                        | D. 70.710+ j30                                                |
| A. 0.02 second                                                              | Ans. A                                                        |
| B. 0.01 second                                                              | O DMG 1 C 41 07 140 A                                         |
| C. 0.04 second                                                              | Que. RMS value of current $I = 25 + j40$ Amp                  |
| D. 0.05 second                                                              | is                                                            |
|                                                                             | A. 57.99                                                      |
| Ans. C                                                                      | B. 47.1699                                                    |
| O A ' 1 C (50 H I                                                           | C. 60                                                         |
| Que. A sine wave has a frequency of 50 Hz. Its                              | D. 30                                                         |
| angular frequency isradian/second                                           | Ans. B                                                        |
| A. $100\pi$                                                                 |                                                               |
| Β. 50π                                                                      | Que. Two currents $I_1 = 10 \angle 50$ and $I_2 = 5 \angle -$ |
| C. 25π                                                                      | 100 A flow in single phase AC circuit. Then                   |
| D. 5π                                                                       | $I_1/I_2 =$                                                   |
| Ans. A                                                                      | A. 5.5596+ j4.924 A                                           |
|                                                                             | B. 2∠150 A                                                    |
| Que. A sine wave of voltage varies from zero                                | C. 7.296+ j12.58 A                                            |
| to maximum of 200V. How much is the                                         | D. None of the above                                          |
| voltage at theinstant of 30° of the cycle?                                  | Ans. B                                                        |
| A. 50V                                                                      | 7 M13. D                                                      |
| B. 82.8V                                                                    |                                                               |
|                                                                             |                                                               |

Que. A 10 mH inductor carries a sinusoidal current of 1 A at frequency of 50 Hz. The average power dissipated by the inductor is

A. 0


B. 3.14 W

C. 0.5 W

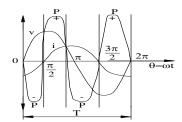
D. 1 W

Ans. A

Que. The curve for the instantaneous power with respect to the waveforms of voltage & current is shown in figure is of



A. pure resistance


B. pure inductance

C. resistance and capacitance

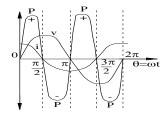
D. pure capacitance

Ans. A

Que. The curve for the instantaneous power with respect to the waveforms of voltage & current is shown in figure is of



A. pure resistance


B. pure inductance

C. pure capacitance

D. purecapaciatance and pure inductance

Ans. B

Que. The curve for the instantaneous power with respect to the waveforms of voltage & current is shown in figure is of



A. pure resistance

B. pure inductance

C. pure capacitance

D. pure capacitance and pure inductance Ans. C

## **UNIT IVC**

Que. An electric iron designed for 110~V AC supply was rated at 500~W. It was put across a 220~V

supply. Assuming that at 110 V, it supplied 500 W output (i.e. no losses) at the new voltage it will

supply\_\_\_\_\_

A. 2500 W

B. 2000 W

C. 500 W

D. 250 W

Ans. B

Que. The mean value of the current  $i = 20 \sin\theta$  from  $\theta=0$  to  $\theta=\frac{\pi}{2}$  is\_\_\_\_\_

Α. 40π

B.  $\frac{40}{100}$ 

C.  $\frac{n}{1}$ 

D.  $\frac{\pi}{40}$ 

Ans. B

Que. An ac current is given as i = 10 + 10 sin 314 t, the average and rms values of the current are \_\_\_\_

| A. 16.36 A, 17.07 A                                         | D. 10                                              |
|-------------------------------------------------------------|----------------------------------------------------|
| B. 10 A, 17.07 A                                            | Ans. A                                             |
| C. 10 A, 12.25 A                                            | Oug If 10 above register is connected coross       |
| D. 16.36 A, 12.2 A<br>Ans. C                                | Que. If 10 ohm resistor is connected across        |
| Alls. C                                                     | an AC voltagev = $100 \sin(314t+30^{\circ})$ , the |
| 0                                                           | power dissipated through resistor is               |
| Que. Two currents $I_1 = 10 \angle 50$ and $I_2 = 5 \angle$ | A. 500 W                                           |
| -100 A flow in single phase AC circuit. Then                | B. 1000 W                                          |
| $I_1+I_2 = $                                                | C. 250 W                                           |
| A. 5.5596+ j4.924 A                                         | D. 100 W                                           |
| B. 5.5596∠4.924 A                                           | Ans. A                                             |
| C. 7.296+ j12.58 A                                          | 0                                                  |
| D. None of the above                                        | Que. For a frequency of 50 Hz, the                 |
| Ans. A                                                      | reactance offered by capacitor is 10 ohms, If      |
|                                                             | the frequency is increased to 100 Hz, the          |
| Que. Two currents $I_1 = 10 \angle 50$ and $I_2 = 5 \angle$ | reactance becomes                                  |
| -100 A flow in single phase AC circuit. Then                | A. 40 ohms                                         |
| $I_1$ - $I_2$ =                                             | B. 20 ohms                                         |
| A. 5.5596+ j4.924 A                                         | C. 5 ohms                                          |
| B. 5.5596∠4.924 A                                           | D. 2.5 ohms                                        |
| C. 7.296+ j12.58 A                                          | Ans. C                                             |
| D. None of the above                                        |                                                    |
| Ans. C                                                      | Que. Which value of inductance will give           |
|                                                             | the same reactance as a capacitor of 2 µF when     |
| Que. In purely inductive circuit, if the                    | both are at 50 Hz?                                 |
| frequency is doubled and applied voltage is                 | A. 5 H                                             |
| halved, the resulting current becomes                       | B. 10 H                                            |
| A. one-fourth                                               | C. 15 H                                            |
| B. one-fifth                                                | D. 20 H                                            |
| C. one-half                                                 | Ans. A                                             |
| D. one-third                                                |                                                    |
| Ans. A                                                      | Que. If a 10 ohm resistance is connected to        |
|                                                             | an AC supply $v = 100 \sin (314t+37^0) V$ , the    |
| Que. The product of (-4-j7) and (6-j2)                      | power dissipated by the resistance is              |
| is                                                          | A. 10 kW                                           |
| A24+j14                                                     | B. 1 kW                                            |
| B. 24-j14                                                   | C. 500 W                                           |
| C38-j34                                                     | D. 250 W                                           |
| D24-j14                                                     | Ans. C                                             |
| Ans. C                                                      |                                                    |
|                                                             | Que. A coil has $X_L = 1000$ ohm. If both its      |
| Que. Inductive reactance of a coil of                       | inductance and frequency are doubled, its          |
| inductance 0.2 H at 50 Hz is ohms.                          | reactance will become ohm                          |
| A. 62.8                                                     | A. 2000                                            |
| B. 628                                                      | B. 500                                             |
| C. 0.2                                                      | C. 250                                             |
|                                                             |                                                    |

| D. 4000 Ans. D  Que. A pure inductance connected across        | A. 5 A<br>B. 3.18 A<br>C. 1.57 A<br>D. 1.10 A         |
|----------------------------------------------------------------|-------------------------------------------------------|
| 250 V, 50 Hz supply consumes 100 W. This consumption is due to | Ans. B                                                |
| A. the big size of the inductor                                | Que. An alternating current is given by $i =$         |
| B. the reactance of the inductor                               | $10 \sin 314t$ . Measuring time from $t = 0$ , the    |
| C. the current flowing in the inductor                         | time taken by the current to reach +10 V for          |
| D. the statement given is false                                | the second time is                                    |
| Ans. D                                                         | A. 0.05 second                                        |
|                                                                | B. 0.1 second                                         |
| Que. A pure capacitor connected across an                      | C. 0.025 second                                       |
| AC voltage consumed 50 W. This                                 | D. 0.02 second                                        |
| A. is due to the capacitive reactance in ohms                  | Ans. C                                                |
| B. is due to the current flowing in capacitor                  |                                                       |
| C. is due to the size of capacitor D. statement is incorrect   | Que. An ac current is given by $i =$                  |
| Ans. D                                                         | $200 \sin 100\pi t$ . It will achieve a value of 100A |
| Alls. D                                                        | aftersecond.                                          |
| Que. An alternating current of 50 Hz                           | A. $\frac{1}{900}$                                    |
| frequency has a maximum value of 100 A. Its                    | B. $\frac{1}{800}$                                    |
| value 1/600 second after the instant current is                | C. $\frac{1}{700}$                                    |
| zero will be                                                   | 700                                                   |
| A. 25 A                                                        | D. $\frac{1}{600}$                                    |
| B. 12.5 A                                                      | Ans. D                                                |
| C. 50 A                                                        |                                                       |
| D. 75 A                                                        | Que. The voltage in a circuit follows the             |
| Ans. C                                                         | law: $v = 100 \sin \omega t$ . If the frequency is 25 |
|                                                                | Hz, how long willit take for the voltage to rise      |
| Que. A sinusoidal voltage varies from zero                     | to 50V?                                               |
| to a maximum of 250 V. The voltage at the                      | A. $\frac{1}{50}$ S                                   |
| instant of 60° of the cycle will be                            | B. $\frac{1}{100}$ S                                  |
| A. 150 V                                                       | 100                                                   |
| B. 216.5 V<br>C. 125 V                                         | $C. \frac{1}{300}S$                                   |
| D. 108.25 V                                                    | D. $\frac{1}{600}$ S                                  |
| Ans. B                                                         | Ans. C                                                |
| 7 His. D                                                       |                                                       |
| Que. The alternating voltage $e =$                             |                                                       |
| 200 sin 314t is applied to a device which                      |                                                       |
| offers an ohmic resistance of 20 $\Omega$ to the flow          |                                                       |
| of current in one direction while entirely                     |                                                       |
| preventing the flow in the opposite direction.                 |                                                       |
| The average value of the current will                          |                                                       |