Select the correct answer or fill up the blanks in the following questions:

- **1.** If *x* is the true value of a quantity and *x*1 is its approximate value, then the relative error is
 - (a) $|x_1 x|/x_1$ (b) $|x x_1|/x$ (c) $|x_1/x|$ (d) $x/|x_1 x|$.
- 2. The relative error in the number 834.12 correct to five significant figures is ...
- **3.** If a number is rounded to *k* decimal places, then the absolute error is

(a)
$$\frac{1}{2} 10^{k-1}$$
 (b) $\frac{1}{2} 10^{-k}$ (c) $\frac{1}{3} 10^{k}$ (d) $\frac{1}{4} 10^{-k}$

- **4.** If π is taken = 3.14 in place of 3.14156, then the relative error is
- **5.** Given x = 1.2, y = 25.6, and z = 4.5, then the relative error in evaluating $w = x^2 + y/z$ is...
- 6. Round off values of 43.38256, 0.0326457, and 0.2537623 to four significant digits: ...
- **7.** Round relative maximum error in 3x2y/z when dx = dy = dz = 0.001 at x = y = z = 1: ...
- **8.** If both the digits of the number 8.6 are correct, then the relative error is...
- **9.** If a number is correct to *n* significant digits, then the relative error is

(a)
$$\frac{1}{2}10^n$$
 (b) $\frac{1}{2}10^{n-1}$ (c) $\leq \frac{1}{2}10^{-n}$ (d) $<\frac{1}{2}10^{n-1}$.

- **10.** If $(\sqrt{3} + \sqrt{5} + \sqrt{7})$ is rounded to four significant digits, then the absolute error is
- **11.** $(\sqrt{102} \sqrt{101})$ correct to three significant figures is...
- **12.** Approximate values of 1/3 are given as 0.3, 0.3, and 0.34. Out of these the best approximation is ...
- **13.** The relative error if 2/3 is approximated to 0.667, is...
- **14.** If the first significant digit of a number is *p* and the number is correct to *n* significant digits, then the relative error is ...

Answer:

1. (<i>b</i>)	2. 0.000005.	3. (<i>b</i>).	4. 0.00049.
5. 0.007.	6. 43.38; 0.63264; 0.25	538. 7. 0.004.	8. 0.0058
9. (c).	10. 0.0015.	11. 0.0496.	12. 0.33.
13. 0.0005.	14. < 1 ($p \times 10^{n-1}$).		

MCQ on Newton-Raphson, Bisection Method, Regula -Falsi Method

- **1.** The order of convergence in the Newton-Raphson method is (a) (b) 3 (c) 0 (d) none.
- 2. The Newton-Raphson algorithm for finding the cube root of N is.....
- **3.** The bisection method for finding the roots of an equation f(x) = 0 is.....
- 4. In the Regula-falsi method, the first approximation is given by.....
- 5. If f(x) = 0 is an algebraic equation, the Newton-Raphson method is given by $xn_{+1} = xn f(xn)/2$ (a) $f(x_{n-1})$ (b) $f'(x_{n-1})$ (c) $f'(x_n)$ (d) $f''(x_n)$.
- **6.** In the Regula-falsi method of finding the real root of an equation, the curve *AB* is replaced by.....
- **7.** Newton's iterative formula to find the value of \sqrt{N} is.....
- **8.** A root of $x^3 x + 4 = 0$ obtained using the bisection method correct to two places, is.......
- 9. Newton-Raphson formula converges when.......
- **10.** In the case of bisection method, the convergence is (a) linear (b) quadratic (c) very slow.
- **11.** Out of the method of false position and the Newton-Raphson method, the rate of convergence is faster for............
- **12.** Using Newton's method, the root of $x^3 = 5x 3$ between 0 and 1 correct to two decimal places, is.......
- 13. The Newton-Raphson method fails when

(a)f'(x) is negative	(b) f'(x) is too large
(c) f'(x) is zero	(d) Never fails.

- **14.** The condition for the convergence of the iteration method for solving $x = \phi(x)$ is.....
- **15.** While finding a root of an equation by the Regula-falsi method, the number of iterations can be reduced...........
- **16.** Newton's method is useful when the graph of the function while crossing the *x*-axis is nearly vertical. (True or False)
- **17.** The difference between a Transcendental equation and polynomial equation is.......
- **18.** The interval in which a real root of the equation $x^3 2x 5 = 0$ lies is......
- **19.** The iterative formula for finding the reciprocal of N is $x_{n+1} = \dots$.
- **20.** While finding the root of an equation by the method of false position, the number of iterations can be reduced......

Answer:

1. (a).
2.
$$x_{n+1} = \frac{1}{3} \left(2x_n + N / x_n^2 \right)$$
.
3. $x_{n+1} = \frac{1}{2} \left(2x_n + x_{n-1} \right)$.
4. $x_2 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0)$.
5. (c).
6. Chord AB.
7. $x_{n+1} = \frac{1}{2} (x_n + N / x_n)$.

12. 0.657.

8. 1.79.

9. Initial approximation is chosen sufficiently close to the root. **10.** (c)

11. Newton-Raphson method.

13. (c). **14.**
$$|\phi'(x)| < 1$$
.

15. If we start with a smaller interval for the root.

16. True	17. 2.1.	18. (2, 3)
19. $x_n (2 - Nx_n)$	20. If we start with a sma	ller interval for the root.

MCQ on Newton-Raphson, Bisection Method, Regula -Falsi Method

- **1.** The order of convergence in the Newton-Raphson method is (a) (b) 3 (c) 0 (d) none.
- 2. The Newton-Raphson algorithm for finding the cube root of *N* is.....
- **3.** The bisection method for finding the roots of an equation f(x) = 0 is.....
- 4. In the Regula-falsi method, the first approximation is given by.....
- 5. If f(x) = 0 is an algebraic equation, the Newton-Raphson method is given by $xn_{+1} = xn f(xn)/?$ (a) $f(x_{n-1})$ (b) $f'(x_{n-1})$ (c) $f'(x_n)$ (d) $f''(x_n)$.
- **6.** In the Regula-falsi method of finding the real root of an equation, the curve *AB* is replaced by.....
- **7.** Newton's iterative formula to find the value of \sqrt{N} is.....
- **8.** A root of $x^3 x + 4 = 0$ obtained using the bisection method correct to two places, is.......
- 9. Newton-Raphson formula converges when......
- **10.** In the case of bisection method, the convergence is (*a*) linear (*b*) quadratic (*c*) very slow.
- **11.** Out of the method of false position and the Newton-Raphson method, the rate of convergence is faster for......
- **12.** Using Newton's method, the root of $x^3 = 5x 3$ between 0 and 1 correct to two decimal places, is.......
- 13. The Newton-Raphson method fails when
 - (a) f'(x) is negative (b) f'(x) is too large
 - (c) f'(x) is zero (d) Never fails.

- 14. The condition for the convergence of the iteration method for solving $x = \phi(x)$ is.....
- 15. While finding a root of an equation by the Regula-falsi method, the number of iterations can be reduced
- 16. Newton's method is useful when the graph of the function while crossing the *x*-axis is nearly vertical. (True or False)
- 17. The difference between a Transcendental equation and polynomial equation is
- **18.** The interval in which a real root of the equation $x^3 2x 5 = 0$ lies is.....
- **19.** The iterative formula for finding the reciprocal of N is $x_{n+1} = \dots$.
- **20.** While finding the root of an equation by the method of false position, the number of iterations can be reduced......

Answer:

LACI 01000 217

1. (a).
2.
$$x_{n+1} = \frac{1}{3} (2x_n + N / x_n^2)$$
.
3. $x_{n+1} = \frac{1}{2} (2x_n + x_{n-1})$.
4. $x_2 = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0)$.
5. (c).
6. Chord AB.
7. $x_{n+1} = \frac{1}{2} (x_n + N / x_n)$.

12. 0.657.

8. 1.79.

9. Initial approximation is chosen sufficiently close to the root. **10.** (c)

11. Newton-Raphson method.

13. (c). **14.**
$$|\phi'(x)| < 1$$

15. If we start with a smaller interval for the root.

16. True	17. 2.1.	18. (2, 3)
19. $x_n (2 - Nx_n)$	20. If we start with a sma	ller interval for the root.

MCQ on FINITE DIFFERENCES

- **1.** $\Delta \nabla =$
- $(a) \nabla \Delta \qquad (b) \nabla + \Delta \qquad (c) \nabla \Delta.$
- 2. Which one of the following results is correct:
 - (a) $\Delta x^n = n x^{n-1}$ (b) $\Delta x^{(n)} = n x^{(n-1)}$
 - (c) $\Delta^n e^x = e^x$ (d) $\Delta \cos x = -\sin x$.
- **3.** If $f(x) = 3x^3 2x^2 + 1$, then $\Delta^3 f(x) = \cdots$
- **4.** The relationship between the operators *E* and *D* is
- **5.** The (n + 1)th order difference of the *n*th degree polynomial is...
- **6.** If y(x) = x(x-1)(x-2), then $\Delta y(x) = \cdots$.
- **7.** $x^3 2x^2 + x 1$ in factorial form = \cdots ...
- **8.** Taking *h*as the interval of differencing, $\Delta^2 x^3 = \cdots$
- **9.** In terms of $E, \Delta = \cdots$.
- **10.** The form of the function tabulated at equally spaced intervals with sixth differences constant, is...
- **11.** If the interval of differencing is unity, then $\Delta^4[(1-x)(1-2x)(1-3x)] = \dots$
- **12.** Taking the interval of differencing as unity, the first difference of $x^4 3x^3 + 2x 1$ is \cdots .
- **13.** The missing values of *y* in the following data:

yx:	0				25	
Δyx :	1	2	4	7	11,	are

14. $\Delta^3[(1-x)(1-3x)(1-5x)] = \cdots$ (interval of differencing being 1)

15. $\Delta \tan^{-1} x = \cdots$.

16. If $y = x^2 - 2x + 2$, taking interval of differencing as unity, $\Delta^2 y = \cdots$.

17. Relation between Δ and *E* is given by \cdots ..

- **18.** The *k*th difference of a polynomial of degree k is...
- **19.** $\Delta^r y_k$ in terms of backward differences =
- **20.** The value of $(\Delta^2/E)e^x = \cdots$.
- **21.** The relation between the shift operator *E* and second order backward difference operator Δ^2 is...
- **22.** The value of $\Delta^n(e^x) = \cdots$ (intervalofdifferencingbeing1).
- **23.** Relationship between *E*, Δ and Δ is...
- **24.** If the fifth and higher order differences of a function vanish, then the function represents a polynomial of degree....
- **25.** The value of $E^{-1}\Delta = \cdots$.
- **26.** If $E^2 u_x = x^2$ and h = 1, then $u_x = \cdots$.
- **27.** Given $y_0 = 2$, $y_1 = 4$, $y_2 = 8$, $y_4 = 32$, then $y_3 = \cdots$.
- **28.** $y_0 = 1, y_1 = 5, y_2 = 8, y_3 = 3, y_4 = 7, y_5 = 0$, then $\Delta^5 y_6 = (a) 61$ (c) 62 (d) - 61.
- **29.** Given *x* = 1 2 3

$f(x) = 3 815$, then $\Delta^2 f(1) =$	
<i>(a)</i> 3	(b) 4
(c) 2	(d) 1
30. $(E^{1/2} + E^{-1/2})(1 + \Delta)^{1/2} =$	
$(a) \Delta + 1$	$(b) \Delta - 1$
$(c) \Delta + 2$	$(d) \Delta - 2.$

- **31.** Which one is incorrect?
 - $\begin{array}{ll} (a) \ E = 1 + \Delta & (b) \ \Delta(5) = 0 \\ (c) \ \Delta(f_1 + f_2) = \Delta f_1 + \Delta f_2 & (d) \ \Delta(f_1 \cdot f_2) = \Delta f_1 + \Delta f_2. \end{array}$

32. $\Delta - \nabla = \delta^2$.	(True or False)
33. $\Delta + \nabla = E + E^{-1}$	(True or False)
34. $E = e^{-hD}$.	(True or False)
35. If $f(x) = e^x$, then $\Delta^6 e^x = (e^h - 1)^6 e^x$.	(True or False)
36. $\Delta^n = \delta^n E^{n/2}$	(True or False)
37. $(1 + \Delta)(1 - \nabla) = 1.$	(True or False)

38. With the usual notations, match the items on right hand side with those in left hand side:

$(i) \ E abla$	(a) $\frac{1}{2}(\Delta + \nabla)$
(ii) hD	$(b) \overline{\Delta} - \nabla$
$(iii) \nabla \Delta$	$(c) \Delta$
$(iv) \mu \delta$	$(d) - \log(1 - \nabla)$

Answer:

1. (<i>a</i>).	2. (<i>b</i>).	3. 18.	4. $E = e^{hD}$.
5. zero.	6. $3x(x-1)$	7. $[x]^3 + [x]^2 - 1$.	8. $6h^2(x+h)$.
9. $1 - E^{-1}$.	10. a polynomial o	of the 6th degree.	11. zero.
12. $4x^3 - 3x^2 - 5x$.	13. 1, 3, 7.	14. – 90	
15. $\tan^{-1}\left(\frac{h}{1+hx+x^2}\right)$.	16. 2.		
17. $\Delta = E - 1$.	18. Constant.	19. $\nabla^r y_{k+r}$	20. $e^{-h} \Delta^2 e^x$.
21. $\nabla^2 = (1 - E^{-1})^2$.	22. $(e-1)^n e^x$.	23. $\Delta = E\nabla$.	24. 5.
25. $\nabla - \nabla^2$.	26. $(x-2)^3$.	27. 16.5.	28. (<i>d</i>). 29. (<i>c</i>).
30. (c).	31. (<i>d</i>).	32. True	33. False.
34. False.	35. True.	36. True.	37. True.

MCQ on FINITE DIFFERENCES

- **1.** $\Delta \nabla =$ (a) $\nabla \Delta$ (b) $\nabla + \Delta$ (c) $\nabla - \Delta$. **2.** Which one of the following results is correct: (a) $\Delta x^n = nx^{n-1}$ (b) $\Delta x^{(n)} = nx^{(n-1)}$ (c) $\Delta^n e^x = e^x$ (d) $\Delta \cos x = -\sin x$.
- **3.** If $f(x) = 3x^3 2x^2 + 1$, then $\Delta^3 f(x) = \cdots$
- **4.** The relationship between the operators E and D is....
- **5.** The (n + 1)th order difference of the *n*th degree polynomial is...

6. If
$$y(x) = x(x-1)(x-2)$$
, then $\Delta y(x) = \cdots$.

- **7.** $x^3 2x^2 + x 1$ in factorial form = \cdots ...
- **8.** Taking *h* as the interval of differencing, $\Delta^2 x^3 = \cdots$
- **9.** In terms of $E, \Delta = \cdots$.
- **10.** The form of the function tabulated at equally spaced intervals with sixth differences constant, is...
- **11.** If the interval of differencing is unity, then $\Delta^4[(1-x)(1-2x)(1-3x)] = \dots$
- **12.** Taking the interval of differencing as unity, the first difference of $x^4 3x^3 + 2x 1$ is \cdots .
- **13.** The missing values of *y* in the following data:

yx:	0				25	
Δyx :	1	2	4	7	11,	are…

14. $\Delta^3[(1-x)(1-3x)(1-5x)] = \cdots$ (interval of differencing being 1)

15. $\Delta \tan^{-1} x = \cdots$.

16. If $y = x^2 - 2x + 2$, taking interval of differencing as unity, $\Delta^2 y = \cdots$.

17. Relation between Δ and *E* is given by \cdots .

- **18.** The *k*th difference of a polynomial of degree k is...
- **19.** $\Delta^r y_{\perp}$ in terms of backward differences =
- **20.** The value of $(\Delta^2/E)e^x = \cdots$.
- **21.** The relation between the shift operator *E* and second order backward difference operator Δ^2 is...
- **22.** The value of $\Delta^n(e^x) = \cdots$ (intervalofdifferencingbeing1).
- **23.** Relationship between *E*, Δ and Δ is...
- 24. If the fifth and higher order differences of a function vanish, then the function represents a polynomial of degree....
- **25.** The value of $E^{-1}\Delta = \cdots$.

26. If $E^2 u_x = x^2$ and h = 1, then $u_x = \cdots$.

- **27.** Given $y_0 = 2$, $y_1 = 4$, $y_2 = 8$, $y_4 = 32$, then $y_3 = \cdots$.
- **28.** $y_0 = 1, y_1 = 5, y_2 = 8, y_3 = 3, y_4 = 7, y_5 = 0$, then $\Delta^5 y_6 =$ (*a*) 61 (b) - 62(c) 62(d) - 61.

```
29. Given x = 1 2 3
```

$f(x) = 3$ 815, then $\Delta^2 f(1) =$	
<i>(a)</i> 3	(b) 4
(c) 2	(d) 1
30. $(E^{1/2} + E^{-1/2})(1+\Delta)^{1/2} =$	
$(a) \Delta + 1$	$(b) \Delta - 1$
$(c) \Delta + 2$	(d) $\Delta - 2$.
31 Which one is incorrect?	

- **31.** Which one is incorrect?
 - $\begin{array}{ll} (a) \ E = 1 + \Delta & (b) \ \Delta(5) = 0 \\ (c) \ \Delta(f_1 + f_2) = \Delta f_1 + \Delta f_2 & (d) \ \Delta(f_1 \, . \, f_2) = \Delta f_1 + \Delta f_2. \end{array}$

32. $\Delta - \nabla = \delta^2$.	(True or False)
33. $\Delta + \nabla = E + E^{-1}$	(True or False)
34. $E = e^{-hD}$.	(True or False)
35. If $f(x) = e^x$, then $\Delta^6 e^x = (e^h - 1)^6 e^x$.	(True or False)
36. $\Delta^n = \delta^n E^{n/2}$	(True or False)
37. $(1 + \Delta)(1 - \nabla) = 1.$	(True or False)

38. With the usual notations, match the items on right hand side with those in left hand side:

$(i) \ E abla$	$(a) \ \frac{1}{2} \left(\Delta + \nabla \right)$
(ii) hD	$(b) \Delta - \nabla$
$(iii) \nabla \Delta$	$(c) \Delta$
$(iv) \mu \delta$	$(d) - \log(1 - \nabla)$

Answer:

1. (<i>a</i>).	2. (<i>b</i>).	3. 18.	4. $E = e^{hD}$.
5. zero.	6. $3x(x-1)$	7. $[x]^3 + [x]^2 - 1$. 8. $6h^2(x+h)$.
9. $1 - E^{-1}$.	10. a polynomial of the 6th degree.		11. zero.
12. $4x^3 - 3x^2 - 5x$.	13. 1, 3, 7.	14. – 90	
15. $\tan^{-1}\left(\frac{h}{1+hx+x^2}\right)$.	16. 2.		
17. $\Delta = E - 1$.	18. Constant.	19. $\nabla^r y_{k+r}$	20. $e^{-h} \Delta^2 e^x$.
21. $\nabla^2 = (1 - E^{-1})^2$.	22. $(e-1)^n e^x$.	23. $\Delta = E\nabla$.	24. 5.
25. $\nabla - \nabla^2$.	26. $(x-2)^3$.	27. 16.5.	28. (d). 29. (c).
30. (<i>c</i>).	31. (<i>d</i>).	32. True	33. False.
34. False.	35. True.	36. True.	37. True.