Discrete
Mathematical Structures
with Applications

to Computer Science

J.P. Tremblay
R. Manohar

[N77] TATA McGRAW-HILL EDITION
-] FOR SALE IN INDIA ONLY

W7

—=l| Tata McGraw-Hill

Discrete Mathematical Structures with
Applications to Computer Science

Copyright © 1975 by McGraw-Hill, Inc.

All nights reserved. No part of this publication may be reproduced or distnbuted
in any form or by any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher

Tata McGraw-Hill Edition 1997

35th reprint 2008
RYLYYDLXRZQXX

Reprinted in India by arrangement with The McGraw-Hill Companies,
Inc., New York

For Sale in India Only

Library of Congress Cataloging-in-Publication Data

Tremblay, Jean-Paul, date
Discrete mathematical structures with applications to computer science.
(McGraw-Hill computer science series)
Includes bibliographies
1. Mathematics.—1961 2. Electronic data processing. 3. Machine
theory. 1.
Manohar, R., date joint author. . Title.
QA39.2.T72 510°.2°40901 74-23954
ISBN 0-07-065142-6

ISBN-13: 978-0-07-463113-3
ISBN-10: 0-07-463113-6

Published by Tata McGraw-Hill Publishing Company Limited,
T West Patel Nagar, New Delhi 110 008, and printed at
Sai Printo Pack Pvt. Ltd., New Delhi 110020

rhe McGraw-Hill Companies

CONTENTS

Preface Xiii

1 Mathematical Logic 1
Introduction 1

I-f Btatements and Notstion 2
1-2 Connectives i
i-2.1 Negation 8
1-2.2 Conjunetion)
i-2.3 Disjunction L()
i1-2.4 Statement Formulas and Truth Tables 11
Exercises -2.4 - 14
{-2.7 Logieal Capabilities of Programming Languages 14
[-26 Conditional and Biconditional 18
Exercises [-2.¢ 22

2.7 We 23

1-2.8 Tautologies 24
Exercises [-2.8 26

1-2.9 Equivalence of Formulas 26
1-2,10 Duality Law 30
1-2.11 Tautological Implications 32

vili CONTENTS

Lixercises 1-2.11 34

1.2 .12 Farmulas with Distinet Truth Tables 3D
1-2.18 Functionally Compilete Sets of Connectives 37
Exercises 1-2.13 38
1-8.14 Other Connectives 39
Exercises 1-2.14 41
1-2.16 Two-state Devices and Statement Logic 41
Exercises {-2.15 19
Exercises 1-2 49

1-8 Normal Forms 50
1-3.1 Disjunetive Normal Forms 50
i1-3.2 Conjunctive Normal Forms 52
1-3.3 Principal Disjunctive Normal Forms 53
1-3.4 Principal Conjunctive Normal Forms 56
1-8.5 Ordering and Uniqueness of Normal Forms 58
Exercises 1-3.5 60
1-3.6 Completely Parenthesized Infix Notation and Polish Notation 61
Exercises 1-3.6 64

1-£ The Theory of Inference for the Statement Caleulus 65
I1-4.1 Validity Using Truth Tables 16
Exercises 1-4.1 67
1-4.2 Rules of Inference 3 b
1-4.83 Consistency of Premises and Indirect Method of Proof 72
1-4.4 Automatic Theorem Proving 74
Exercises /-4 79

1-6 The Predicate Caleulus 79
I-5.1 Predicates R0
1-5.2 The Btatement Function, Variables, and Quantifiers 82

] red) J ot}]

1-5.4 Free and Bound Variables %6
1-5.5 The Universe of Discourse e
Exercises [-4 R0

16 Inference Theory of the Predicate Calculus 90
I1-6.1 Valid Formulas and Equivalences)

. id I r Finite : 92

1-6.8 Special Valid Formulas Involving Quantifiers 04
1-6.4 Theory of Inference for the Predicate Caleulus 06
16.5 Formulas Involving More Than One Quantifier a9
Exercises 1-6 101
Bibliography 102

2 Set Theory 104
Introduction 104

2-1 Basic Conecepts of Set Theory 105
2-1.1] Notation 105

CONTENTE ix

£2-1.2 Inclusion and Equality of Sets 107
2-1.8 The Power Set 100
Exercises 2-1.83 111
2-1.4 Some Operations on Sets 111
Exercises 2-1.4 115
2-1.6 Venn Diagrams 116
Exercises 2-1.56 118
9.1.6 Some Basic Set Identities 118
£-1.7 The Principle of Specification 121
£-1.8 Ordered Pairs and n-tuples 122
2-1.9 CCartesian Products 123
Exercises £-1 125
2-2 Representation of Discrete Structures 126
2-2.1 Data Structures 126
2-2.2 Storage Structures 129
2-2.3 »dequential Allocation 130
2.2 4 Pointers and Linked Allocation 132
2-25 An Application of Bit Represented Sets 141
Exercises 2-2 147
2-8 Relations and Ordering 148
2-3.1 Ielations 149
Exercises £-3.1 153
2-3.2 Properties of Binary Relations in a Set 154
Exercises 2-3.2 155
2-3.3 Relation Matrix and the Graph of a Relation 156
2-3.4 Partition and Covering of a Set 162
Exercises 2-3.4 164
2-3.6 Faquivalence Relations 164
2-3.6 Compatibility Relations 171
Exercises 2-3.6 175
2-3.7 Composition of Binary Relations 176
Exercises £2-3.7 182
2-3.8 Partial Ordering 183
2-3 9 Partially Ordered Set: Representation and Associated
Terminology 156
Exercses 2-3.9 191
£2-4 Functions 192
2-4.1 Definition and Introduction 192
Exercises 2-4.1 197
2-4.2 Composition of Functions 198
2-4.8 Inverse Functions 201
Exercises 2-4.3 204
2-4.4 Binary and n-ary Operations 205
Exercises 2-4.4 210

2-4.6 Characteristic Function of a Set 210

X CONTENTS

2-4.6 Hashing Functions 212
Exercises 2-4.6 219
Exercises 2-4 219

£-6 Natural Numbers 220
£2-6.1 Peano Axioms and Mathematical Induction 220
2-5.2 Cardinality 224
Exercises 2-5 231

£2-6 Recursion 232
2-6.1 Recursive Functions, Sets, and Predicates 232
Exercises 2-6.1 243
2-6.2 Recursion in Programming Languages 243
Exercises 2-6 259

2-7 Recursion in Mechanical Theorem Proving 261
Excrcises 2-7 208
Bibliography 268

3 Alpebraic Structures 270
Introduction 270

3-1 Algebraic Systems: Examples and General Properties 271
3-1.1 Definition and Examples 271
3-1.2 Bome Simple Algebraic Bystems and General Properties 274
Exercises 3-1 281

8-2° Semigroups and Monoids 282
3-2.1 Definitions and Examples 282
3-2.2 Homomorphism of Semigroups and Monoids 287
3-2.3 Subsemigroups and Submonoids 292
Exercises 9-2 204

3-3 Grammars and Languages 204
3-3.1 Discussion of Grammars 295
3-3.2 Formal Definition of a Language 204
3-3.3 Notions of Syntax Analysis 304
Exercises 3-3 308

8-4 Polish Expressions and Their Compilation 309
3-4.1 Polish Notation 310
3-4.2 Conversion of Infix Expressions to Polish Notation 311
Exercises 3-4 318

8-6 Groups 319
3-5.1 Definitions and Examples 319
Exercises 3-5.1 328
3-6.2 Subgroups and Homomorphisms 329
Exercises 3-5.2 333
3-6.8 Cosets and Lagrange's Theorem 333
3-4.4 Normal Subgroups 335
3-5.6 Algebraic Systems with Two Binary Operations 341

Exercises 3-5.6

343

Exercises 3-5 344
88 The Application of Residue Arithmetic to Computers 344
36.1 Introduction to Number Systems 345
3-6.2 Residue Arithmetic 348
Exercises 3-6 350
8-7 Group Codes 359
3-7.1 The Communication Model and Basic Notions of Error
Correction 360
3-7.2 Generation of Codes by Using Parity Checks 364
3-7.83 Error Recovery in Group Codes 373
Exercises 3-7 376
Bibliography 376
4 Lattices and Boolean Algebra 378
Introduction 378
4-1 Lattices as Partially Ordered Sets 379
4-1.1 Definition and Examples 379
Exercises 4-1.1 382
4-1.2 BSome Properties of Lattices 382
Exercises 4-1.2 385
4-1.8 Lattices as Algebraic Systems 385
4-1.4 BSublattices, Direct Product, and Homomorphism 387
Exercises 4-1.4 391
4-1.5 Some Special Lattices 392
Exercises 4-1.5 397
4-2 Boolean Algebra 297
4-2.1 Definition and Examples 398
4-2.2 Subalgebra, Direct Product, and Homomorphism 401
Exercises 4-2 405
4-3 Boolean Functions 406
4-3.1 Boolean Forms and Free Boolean Algebras 406
4-3.2 Values of Boolean Expressions and Boolean Functions 410
Exercises 4-3 417
4-4 Representation and Minimization of Boolean Functions 418
4-4.1 Representation of Boolean Funections 418
4-4.2 Minimization of Boolean Funetions 424
Exercises 4-/ 433
4-6 Design Examples Using Boolean Algebra 436
Exercises 4-5 451
46 Finite-state Machines 453
4-6.1 Introductory Sequential Cireuits 453
4-6.2 Equivalence of Finite-state Machines 456
Exercises 4-6 465
Bibliography 466

xii cCoNTENTS
5 Graph Theory 468
Introduction 468
&-1 Basic Concepts of Graph Theory 469
6-1.1 Basie Definitions 469
Exercises §-1.1 475
5-1,2 Paths, Reachability, and Connectedness 476
Exercises 5-1.2 483
d-1.8 Matrix Representation of Graphs 484
Exercises 5-1.8 493
5-1.4 Trees 4G4,
Exercises 5-1.4 501
5-2 Btorage Representation and Manipulation of Graphs 501
§-2.1 Trees: Their Representation and Operations 501
5-2.2 List Structures and Graphs 509
Exercises 5-2 514
5-8 Simple Precedence Grammars 515
6-3.1 Syntax Terminology 516
6-3.2 A View of Parsing 520
6-3.3 Notion and Use of Precedence Relations 523
6-3.4 Formal Definition of Precedence Relations 526
5-8 5 Parsing Alporithm for Simple Precedence Grammars 530
Exercises 5-3 532
6-4 Fault Detection in Combinational Switching Cirecuits 533
5-4.1 Faults in Combinational Circuits 534
6-4.2 Notions of Fault Detection 53D
5-4.83 Algorithm for Generating a Fault Matrix 537
6-4.4 Procedure for the Detection of Faults 547
Exercises §-4 549
6-6 PERT and Related Techniques 550
Exercises 5-5 555
Bibliography 55D
6 Introduction to Computability Theory 557
Introduction 557
6-1 Finite-state Acceptors and Regular Grammars 558
Exercises 6-1 566
6-2 Turing Machines and Partial Recursive Functions 566
Exercises 6-2 584
Bibliography o84
Appendix 585
Index 591

PREFACE

Several advanced books in computer science begin with a chapter consisting
of a selection of mathematical topics that the reader is assumed to know. The
exposition of such topics is usually brief, and the principal results that are
summarized become prerequisites for the remainder of the text. It is not possible
to learn these topics from such a brief treatment. Nor is it possible for under-
graduate students in computer science to study all the topies they are required
to know by attending courses dealing with each individual topic as given by
mathematies departments. In general, the trend is to select several topics in
mathematics that are essential to the study of many computer science areas
and to expose the students to the mathematical prerequisites in some other
way. A similar development has occurred in most engineering curricula. In the
same spirit, this book discusses certain selected topics in mathematics which
can be referred to as “‘discrete mathematics.” No prerequisites except the mathe-
matical maturity of a high school student are assumed. Although many students
taking a course in discrete mathematics may have had a freshman course in
calculus, such a course is by no means a prerequisite to the study of this book.
Howeter, any additional mathematical courses taken by students will aid in
their development of mathematical maturity.

It is not our intention to cover all topics in discrete mathematica, The
omission of counting techniques, permutetions, and probability will be felt by

xiv PREFACE

some readers. We have assumed that many high school students will have had
some exposure to these topics.

The selection of the topics was governed by our desire to introduce most
of the basic terminology used in as many advanced courses in computer science
as possible. In order to motivate the students properly, we feel that it is im-
portant to consider certain applications as the terminology is introduced. There
are several advantages in using this approach. Students begin to see the relevance
of abstract ideas and are therefore better motivated. Moreover, they gain
confidence in applying these ideas to solve practical problems.

We wish to emphasize that concepts and terminology should be introduced
well before they are used. Otherwise, students must invariably struggle both
with the basic tools and with the subject matter to which the tools are applied.
Most of the material in this book is properly a prerequisite to so many computer
science courses that it should be taught no later than at the sophomore level.
The book has been written with this objective in mind.

The mathematical topics to be discussed are logic, set theory, algebraic
structures, Boolean algebra, graph theory, and basic computability theory.
Although well-known and excellent books exist in these areas, we introduce
these topics still keeping in mind that the reader will eventually use them in
certain practical applications particularly related to computer science. We
have strived to introduce the theoretical material in a reasonably mathematically
precise manner whenever possible, while avoiding long philosophical discussions,
questions of paradoxes, and any axiomatic approach to certain theories. The
topics selected will also support the more advanced courses in computer science
programs such as in the areas of automata, computability, artificial intelligence,
formal languages and syntactical analysis, information organization and retrieval,
switching theory, computer representation of discrete structures, and pro-
gramming languages. It is hoped that a grasp of the theoretical material in
this book will permit a student to understand most of the mathematical pre-
liminaries which are briefly discussed at the beginning of many articles and books
in the areas of computer science just mentioned.

Because the relation between the mathematics and how or where it could
be applied may not be clear to the reader, the computer representation of certain
mathematical structures is discussed. The need for discrete structures in com-
puter science is motivated by the selection of certain applications from various
areas in the field. Algorithms are developed for most applications, and computer
programs are given for some of them. The computer representation and manip-
ulation of discrete structures such as strings, trees, groups, and plexes are not
discussed in great detail, but only to the extent which permits the formulation

of a solution to a particular application. _
_ Chapter 1 discusses mathematical logic. An elementary introduction to
certain topics in logic is given to students in education, commerce, economics,
and sccial sciences in courses usually entitled “Finite Mathematics.”” However,
such discussions usually end with the construction of truth tables, and in certain
instances a bnef introduction to the inference theory of the statement calculus
i8 included. In order for students to be able to read technical articles and books

PREFACE XV

in computer science, it is necessary for them to know something about predicate
calculus. Therefore, we have gone further in our discussion of logic than is
usually done in books on finite mathematics. Yet we have avoided the philo-
sophical discussions and intricate details that are found in the books on mathe-
matical logic meant for mathematicians and philosophers. The chapter contains
a brief introduction to the application of logic to two-state devices.

Chapter 2 deals with set theory. Some mathematical rigor is maintained
in the discussions and proofs are sometimes given, but we do not raise the ques-
tion of paradoxes and the axiomatic approach to set theory. Sets, relations,
orderings, and recursive functions are discussed. The computer representation
and manipulation of certain structures are introduced in this chapter. An
example of the interrelationship of set theory and logic is given. The topic of
recursion (and its implementation) is dealt with in some detail since many pro-
gramming languages permit its use. Furthermore, the concept of recursion is
important in its own right because computer scientists will encounter, throughout
their careers, problems where recursion is unavoidable. The chapter concludes
with an algorithm for proving theorems in the propositional calculus.

Chapter 3 discusses algebraic structures. Most books in modern algebra
devote almost all their attention to group theory while little is said about semi-
groups and monoids. The latter are also emphasized in this chapter since it is
semigroup and monoid theory which is very important in certain areas of com-
puter science such as formal language theory, syntactic analysis, and automata.
This chapter contains a number of applications dealing with topies such as the
compilation of Polish expressions, languages and grammars, the theory of
fast-adders, and error detecting and correcting codes.

Chapter 4 is concerned with Boolean algebra and its application to switching
theory and sequential machines. An introduction to the minimization of Boolean
functions and to its use in the logical design of digital computer systems is
given. Sequential machines and their equivalence are also discussed.

Chapter 5 gives a brief introduction to graph theory. Elements of graph
theory are indispensable in almost all computer science areas. Examples are
given of its use in such areas as syntactic analysis, fault detection and diagnosis
in computers, and minimal-path problems. The computer representation and
manipulation of graphs are also discussed so that certain important algorithms
can be included.

Finally, Chapter 6 gives a very brief introduction to computability theory.
The equivalence of finite-state acceptors and regular grammars is shown. Finally,
the concept of an effective procedure is introduced. It is shown that a Turing
machine can evaluate any partial recursive function.

The exercises are of both a theoretical and a programming nature and are
meant to further the understanding of the application of the concepts to various
areas of computer science. The material in this book incorporates, in addition
to logic, most of what the ACM Curriculum Committee on Computer Science
recommends for the course “Introduction to Discrete Structures,” !

! Course B3 in CACM 11, pp. 172-173, 1968.

Xvli PREFACE

We hope that this book will be of use to computer scientists, engineers,
nonmathematics students who desire an intermediate coverage of topics in
discrete mathematics, and mathematicians who want to familiarize themselves
with the application of the theory to computer science. Students who have
some previous background in modern logic and algebra will be able to master
the material in one semester. For other students who have no previous knowl-
edge of logic and algebra, this book can be used in a two-semester course. Certain
topics can be selected to form a one-semester course. The omission of the applica-
tions discussed in the text will not result in any loss of continuity in the material.
This book is based on the experience gained in teaching a course on discrete
structures at the University of Saskatchewan at Saskatoon during the past
four years.

A basic familiarity with either standard FORTRAN or PL/I is assumed.
PL/I is useful in applications that involve recursion or list structures.

We owe a great deal to John A. Copeck and Richard F. Deutscher, who
made many valuable eriticisms and suggestions throughout the entire prepara-
tion and proofreading of the book. They also helped us in formulating and testing
most of the algorithms. In particular, John Copeck assisted in the preparation of
Chapter 1 and Sections 2-7, 4-4, 4-5, 5-2, 5-5, and 6-2. Also, Richard Deutscher
assisted in the preparation of Chapter 2, Sections 4-4 and 5-1, and many of the
figures.

We aiso thank Peter Hardie for his assistance in working out the details on
fault diagnosis in Section 5-4 and Andrew Carson for his suggestions in Chapter 3.
Robert Probert proofread Sections 5-1 and 6-2, Don McKillican and Allan
Listol worked out the exercises, and Gail Galgan helped in proofreading and
constructing the index, We owe a very special thanks to Alice Mae MacDonald
who did such an excellent job of typing the manuseript, and to Helen Henderson
and Dorethy Peake for providing typing support. This work would not have
been possible without the support given by the University of Saskatchewan

J. P. TREMBLAY
R. MANOHAR

DISCRETE
MATHEMATICAL
STRUCTURES WITH
APPLICATIONS

TO COMPUTER
SCIENCE

1

MATHEMATICAL LOGIC

INTRODUCTION

One of the main aims of logic is to provide rules by which one can determine
whether any particular argument or reasoning is valid (correct).

Logic is concerned with all kinds of reasonings, whether they be legal argu-
ments or mathematical proofs or conclusions in a scientific theory based upon
a set of hypotheses. Because of the diversity of their application, these rules,
called rules of inference, must be stated in general terms and must be independ-
ent of any particular argument or discipline involved. These rules should also
be independent of any particular language used in the arguments. More pre-
cisely, in logic we are concerned with the forms of the arguments rather than
with the arguments themselves. Like any other theory in science, the theory of
inference is formulated in such a way that we should be able to decide about the
validity of an argument by following the rules mechanically and independently
of our own feelings about the argument. Of course, to proceed in this manner
requires that the rules be stated unambiguously.

Any collection of rules or any thecry needs a language in which these rules
or theory can be stated. Natural languages are not always precise enough. They

2 MATHEMATICAL LOGIC

are also ambiguous and, as such, are not suitable for this purpose. It is therefore
nécessary first to develop a formal language called the object language. A formal
language 1s one in which the syntax is well defined. In fact, every scientific dis-
cipline develops its own object language which consists of certain well-defined -
terms and well-specified uses of these terms. The only difference between logic
and other disciplines is that in other disciplines we are concerned with the use of
the object language while in logic we are as interested in analyzing our object
language as we are in using it. In fact, in the first half of this chapter we shall
be concerned with the development and analysis of an object language without
considering its use in the theory of inference. This study has important applica-
tions in the design of computers and several other two-state devices, as is shown
in Sec. 1-2.15. We emphasize this part of logic because the study of formal lan-
guages constitutes an important part in the development of means of communiea-
tion with computing machines. This study is followed by the study of inference
theory in Sec. 1-4. It soon becomes apparent that the object language developed
thus far is very limited, and we cannot include some very simple argument forms
in our inference theory. Therefore, in Sec. 1-6 we expand our object language
to include predicates, and then in See. 1-6 we discuss the inference theory of
predicate logic.

In order to avoid ambiguity, we use symbols which have been clearly de-
fined in the object languages. An additional reason to use symbols is that they
are easy to write and manipulate. Because of this use of symbols, the logic that
we shall study is also called symbelic logic. Our study of the object language re-
quires the use of another language. For this purpose we can choose any of the
natural languages. In this case our choice is English, and so the statements about
the object language will be made in English. This natural language (English)
will then be called our metalanguage. Certain inherent difficulties in this pro-
cedure could be anticipated, because we wish to study a precise language while
using another language which is not so precise,

1-1 STATEMENTS AND NOTATION

In this section we introduce certain basic units of our object language called
primary (primitive, atomic) statements. We begin by assuming that the object
language contains a set of declarative sentences which cannot be further broken
down or analyzed into simpler sentences. These are the primary statements. Only
those declarative sentences will be admitted in the object language which have
one and only one of two possible values called “truth values.” The two truth
values are {rue and false and are denoted by the symbols T and F respectively.
Occasionally they are also denoted by the symbols 1 and 0. The truth values
have nothing to do with our feelings of the truth or falsity of these admissible
sentences because these feelings are subjective and depend upon context. For
our purpose, it is enough to assume that it is possible to assign one and only one
of the two possible values to a declarative sentence. We are concerned in our
study with the effect of assigning any particular truth value to declarative sen-
tences rather than with the actual truth value of these sentences. Since we admit
only two possible truth values, our logic is sometimes called a {wo-valued logic.

1-1 ETATEMENTS AND NOTATION 3

We develop a mechanism by which we can construct in our object language other
declarative sentences having one of the two possible truth values. Note that we
do not admit any other types of sentence, such as exclamatory, interrogative,
ete., in the object language.

Declarative sentences in the object language are of two types. The first
type includes those sentences which are considered to be primitive in the object
language. These will be denoted by distinet symbols selected from the capital
letters A, B, C, ..., P, Q, ..., while declarative sentences of the second type are
obtained from the primitive ones by using certain symbols, called connectives,
and certain punctuation marks, such as parentheses, to join primitive sentences.
In any case, all the declarative sentences to which it is possible to assign one
and only one of the two possible truth values are called siaiements. These state-
ments which do not contain any of the connectives are called atomic (primary,
primilive) stalements.

We shall now give examples of sentences and show why some of them are
not admissible in the object language and, hence, will not be symbolized.

Canada is a country.

Moscow is the capital of Spain.
This statement 1s false,

1+ 101 = 110,

Close the door.

Toronto is an old city.

Man will reach Mars by 1980.

-2 O T~ g W

Obviously Statements (1) and (2) have truth values irue and false respec-
tively. Statement (3) is not a statement according to our definition, because we
cannot properly assign to it a definite truth value. If we assign the value frue,
then Sentence (3) says that Statement (3) is false. On the other hand, if we
assign it the value false, then Sentence (3) implies that Statement (3) is true.
This example illustrates a semantic paradox. In (4) we have a statement whose
truth value depends upon the context; viz., if we arc talking about numbers in
the decimal system, then it is a false statement. On the other hand, for numbers
in binary, it is a true statement. The truth value of a statement often depends
upon its context, which is generally unstated but nonetheless understood. We
shall soon see that we are not going to be preoccupied with the actual truth value
of a statement. We shall be interested only in the fact that it has a truth value.
In this sense (4), (6), and (7) are all statements. Note that Statement (6) is
considered:true in some parts of the world and false in certain other parts. The
truth value of (7) could be determined only in the year 1980, or earlier if a man
reaches Mars before that date. But this aspect is not of interest to us. Note that
(5) is not a statement; it is a command.

Once we know those atomic statements which are admissible in the object
language, we can use symbols to denote them. Methods of constructing and
analyzing statements constructed from one or more atomic statements are dis-
cussed in Sec. 1-2, while the method of symbolizing atomic statements will be
described here after we discuss some conventions regarding the use and mention

of names in statements.

4 MATHEMATICAL LOGIC

It is customary to use the name of an object, not the object itself, when
making a statement about the object. As an example, consider the statement

& This table is big.

The expression ‘“‘this table” is used as a name of the object. The actual object,
namely a particular table, is not used in the statement. It would be inconvenient
to put the actual table in place of the expression ‘“this table.” Even for the case
of small objects, where it may be possible to insert the actual object in place of
its name, this practice would not permit us to make two simultaneous state-
ments about the same object without using its name at one place or the other.
For this reason it may be agreed that a statement about an object would contain
never the object itself but only its name. In fact, we are so familiar with this
convention that we take it for granted.

Consider, now, a situation in which we wish to discuss something about a
name, so that the name is the object about which a statement is to be made,
According to the rule just stated, we should use not the name itself in the state-
ment but some name of that name. How does one give a name to a2 name? A
usual method is to enclose the name in quotation marks and to treat it as a name
for the name. For example, let us look at the following two statements.

9 C(Clara is smart.
10 “Clara’” contains five letters.

In (9) something is said about a person whose name is Clara. But Statement (10)
is not about a person but about a name. Thus “Clara” is used as a name of this
name. By enclosing the name of a person in Guotation marks it is made clear
that the statement made in (10) is about a name and not about a person.

This convention can be explained alternatively by saying that we use a
certain word in a sentence when that word serves as the name of an object under
consideration. On the other hand, we mention a word in a sentence when that
word is acting not as the name of an object but as the name of the word itself.
To ““mention” a word means that the word itself has been converted into an

object of our consideration.
Throughout the text we shall be making statements not only about what

we normally consider objeets but also about other statements. Thus 1t would be
necessary to name the statements under consideration. The same device used
for naming names could also be used for naming statements. A statement en-
closed in quotation marks will be used as the name of the statement. More gen-
erally, any expression enclosed in quotation marks will be used as the name of
that expression. In other words, any expression that is mentioned is placed in
quotation marks. The following statement illustrates the above discussion.

11 *“Clara 18 smart’’ contains ‘“Clara.”

Statement (11) 1s a statement about Statement (9) and the word "“Clara.”
Here Statement (9) was named first by enclosing it in quotation marks and then
by using this name in (11) along with the name ““Clara’’!

In this discussion we have used certain other devices to name statements,
One such device is to display a statement on a line separated from the main
text. This method of display is assumed to have the same effect as that obtained

1-1 BTATEMENTS AND NOTATION 5

by using quotation marks to delimit a statement within the text. Further, we
have sometimes numbered these statements by inserting a number to the left
of the statement. In a later reference this number is used as a name of the state-
ment. This number is written within the text without quotation marks. Such a
display and the numbering of statements permit some reduction in the number of
quotation marks. Combinations of these different devices will be used throughout
the text in naming statements. Thus the statement

12 *“Clara is smart” is true.
could be written as ‘“(9) is true,” or equivalently,
12a (9) is true.

A particular person or an object may have more than one name. It is an
accepted principle that one may substitute for the name of an object in a given
statement any other name of the same object without altering the meaning of the
statement. This principle was used in Statements (12) and (12a).

We shall be using the name-forming devices just discussed to form the
names of statements. Very often such distinetions are not made in mathematical
writings, and generally the difference between the name and the object is as-
sumed to be clear from the context. However, this practice sometimes leads to
confusion.

A situation analogous to the name-object concept just discussed exists in
many programming languages. In particular, the distinction between the name
of a variable and its value is frequently required when a procedure (function or
subroutine) is invoked (called). The arguments (also called actual parameters)
in the statement which invokes the procedure are associated with the (formal)
parameters of the procedure either by name or by value. If the association is
made by value, then only the value of an argument is passed to its corresponding
parameter. This procedure implies that we cannot change the value of the argu-
ment from within the function since it is not known where this argument is
stored in the computer memory. On the other hand, a call-by-name association
makes the name or address of the argument available to the procedure. Such
an association allows the value of an argument to be changed by instructions
in the procedure. We shall now discuss how call-by-name and call-by-value as-
sociations are made in a number of programming languages.

In certain versions of FORTRAN compilers (such as IBM’s FORTRAN H
and G) the name of an argument, not its value, is passed to a function or sub-
routine. This convention also applies to the case of an argument’s being a con-
stant. The address of a constant (stored in some symbol table of the compiler)
is passed to the corresponding parameter of the function. This process could lead
to catastrophic results. For example, consider the simple function FUN de-
scribed by the following sequence of statements:

INTEGER FUNCTION FUN(I)

I=5
FUN=I
RETURN

END

6 MATHEMATICAL LOGIC

Suppose that the main program, which invokes FUN, consists of the trivial
statements

K=3
J=FUN(K) % 3
L=FUN(@3) %3
PRINT 10, J, L

10 FORMAT(1H , I3, I3)
STOP
END

This program yields values of 15 and 2o for variables J and L respectively. In
the evaluation of J, the address of K is known within the function. K is changed
in the function to a value of 5 by the statement I = 5. The functional value re-
turned by the function is 5, and a value of 15 for J results. The computation of
L, however, 18 quite different. The address of 3 1s passed to the function. Since
the corresponding parameter I is changed to 5, the value of 3 in the symbol table
in the main program will also be changed to 5. Note that since all references to the
symbol table entry for constant 3 were made at compile time, all such future
references in the remainder of the main program still refer to that entry or loca-
tion, but the value will now be 5, not 3. More specifically, the name 3 in the right

operand of the multiplication of L has a value of 5.
In other versions of FORTRAN compilers, such results are prevented by

creating a dummy variable for each argument that is a constant. These internal
(dummy) variables are not accessible to the programmer. A change in parameter
corresponding to a dummy variable changes the value of that variable, but it
does not change the value of the original argument from which it was constructed.

WATFIV permits the passing of arguments by value by merely enclosing
such arguments in slashes. For example, in the function call

TEST(I,/K/,5)

the value of K is passed to the funetion TEST,

In PL/I arguments can be passed by value or by name. An argument is
passed by wvalue if it is enclosed within parentheses; otherwise it is passed by
name. In the function call

TEST(1,(K),5)

the arguments I and K are passed by name and by value respectively.

As mentioned earlier, we shall use the capital letters A, B, ..., P, @, ...
(with the exception of T and F) as well as subscripted capital letters to represent
statements in symbolic logic. As an illustration, we write

18 P: It is raining today.

In Statement (13) we are including the information that “P” is a statement in
symbolic logic which corresponds to the statement in English, “It is raining
today.”” This situation is similar to the translation of the same statement into
French as “Aujourd’hui il pleut.” Thus “P" in (13)—*It is raining today’’-—and
‘““Aujourd’hui il pleut” are the names of the same statement., Note that “P”’ and
not P is used as the name of a statement.

1-2 coNNECTIVEE 7

1-2 CONNECTIVES

The notions of a statement and of its truth value have already been introduced.
In the case of simple statements, their truth values are fairly obvious. However,
1t is possible to construct rather complicated statements from simpler statements
by using certain connecting words or expressions known as ‘“‘sentential connec-
tives.” Several such connectives are used in the English language. Because they
are used with a variety of meanings, it is necessary to define a set of connectives
with definite meanings. It is convenient to denote these new connectives by
means of symbols. We define these connectives in this section and then develop
methods to determine the truth values of statements that are formed by using
them. Various properties of these statements and some relationships between
them are also discussed. In addition, we show that the statements along with the
connectives define an algebra that satisfies a set of properties. These properties
enable us to do some calculations by using statements as objects. The algebra
developed here has interesting and important applications in the field of switching
theory and logical design of computers, as is shown in Sec. 1-2.15. Some of these
results are also used in the theory of inference discussed in Sec. 1-4.

The statements that we consider initially are simple statements, called
atomic or primary statements. As already indicated, new statements can be formed
from atomic statements through the use ot sentential connectives. The resulting
statements are called molecular or compound statements. Thus the atomic state-
ments are those which do not have any connectives.

In our everyday language we use connectives such as “and,” “‘but,” *or,”
etc., to combine two or more statements to form other statements. However,
their use i1s not always precise and unambiguous. Therefore, we will not sym-
bolize these connectives in our object language; however, we will define connec-
tives which have some resemblance to the connectives in the English language.

The 1dea of using the capital letters P, @, ..., Py, P, ... to denote state-
ments was already introduced in Sec. 1-1. Now the same symbols, namely, the
capital letters with or without subscripts, will also be used to denote arbitrary
statements. In this sense, a statement “P” either denotes a particular statement
or serves as a placeholder for any statement whatsoever. This dual use of the
same symbol to denote either a definite statement, called a constant, or an arbi-
trary statement, called a variable, does not cause any confusion as its use will be
clear from the context. The truth value of “P"” is the truth value of the actual
statement which it represents. It should be emphasized that when “P" is used as
a statement variable, it has no truth value and as such does not represent a state-
ment in symbolic logic. We understand that if i1t is to be replaced, then its re-
placement must be a statement. Then the truth value of P could be determined.
It 1s convenient to call “P” in this case a ‘‘statement formula.” We discuss the
notion of “statement formula” in Sec. 1-2.4. However, in the sections that follow,
we often abbreviate the term ‘“statement formula’ simply by ‘‘statement.”
This abbreviation keeps our discussion simple and emphasizes the meaning of
the connectives introduced.

As an 1llustration, let

P: It is raining today.

Q: It is snowing.

8 MATHEMATICAL LOGIC

and let R be a statement variable whose possible replacements are P and Q. If
no replacement for R is specified, it remains a statement variable and has no
truth value. On the other hand, the truth values of P and @ can be determined
because they are statements.

1-2.1 Negation

The negation of a statement is generally formed by introducing the word “not”
at a proper place in the statement or by prefixing the statement with the phrase
“It is not the case that.” If “P” denotes a statement, then the negation of “P”
is written as “~ |P"” and read as “not P.” If the truth value of “P" is T, then
the truth value of *“7|P’" is F. Also if the truth value of “P’" is F, then the truth
value of “ 7 |P" is T'. This definition of the negation is summarized by Table 1-2.1.

Notice that we have not used the quotaticn marks to denote the names of
he statements in the table. This practice is in keeping with the one adopted
earlier, when a statement was separated from the main text and written on a
separate line. From now on we shall drop the quotation marks even within the
text when we use symbolic names for the statements, except in the case where
this practice may lead to confusion. We now illustrate the formation of the nega-
tion of a statement,

Consider the statement

P: London is a city.
Then P i1s the statement

—1P: It is not the case that London is a city.

Normally 7]P can be written as
~1P: London is not a city.

Although the two statements “It is not the case that London is a ecity” and
“London is not a city” are not identical, we have translated both of them by
TP, The reason is that both these statements have the same meaning in Englizh,
A given statement in the object language is denoted by a symbol, and it may
correspotd to several statements in English. This multiplicity happens because
in a nutural language one can express oneself in a variety of ways,

A~ an illustration, if a statement is

£: I went to my class vesterday,

then 1= anv one of the following

{1 did not go to my class vesterday,

Table 1-2.1 TRUTH TABLE FOR

NEGATION
P P
r S
3 T

1-2 CONNECTIVES 9

2 1 was absent from my class vesterday.
8 It is not the case that I went to my class yesterday.

The symbol “7]"” has been used here to denote the negation. Alternate
symbols used in the literature are “~,” a bar, or “NOT,” so that " |P is written
as ~P, P, or NOT P, Note that a negation is called a connective although it only
modifies a statement. In this sense, negation is a unary operation which operates
on a single statement or a variable. The word “operation’ will be explained in
Chap. 2. For the present it is sufficient to note that an operation on statements
generates other statements. We have chosen “~ |"” to denote negation because this
symbol is commonly used in the textbooks on logic and also in several program-
ming languages, one of which will be used here.

1-2.2 Conjunction

The conjunction of two statements P and Q is'the statement P A Q which is read
as “P and Q.” The statement P A @ has the truth value T whenever both P

and @ have the truth value T'; otherwise it has the truth value F. The conjunc-
tion is defined by Table 1-2.2.

EXAMPLE 1 Yorm the conjunction of
P: It 1s raining today.
QQ: There are 20 tables in this room.

soLUTION It is raining today and there are 20 tables in this room. ////

Normally, in our everyday language the conjunction “and’ is used between
two statements which have some kind of relation. Thus a statement “It is raining
today and 2 + 2 = 4" sounds odd, but in logic it is a perfectly acceptable state-
ment formed from the statements “It is raining today’ and “2 4+ 2 = 4.7

EXAMPLE 2 Translate into symbolic form the statement
Jack and Jill went up the hill.

soLUTION In order to write it as s coijunetion of two statements, it 1s
necessary first to paraphrase the statement a-

Jack went up the hili apd LB wenr an the hall

Table 1-1.2 TRUTH TABLE FOR
CONMIUNCTION

» 0 P Q
i i 1
L] .t."'

10 MATHEMATICAL LOGIC

If we now write
P: Jack went up the hill.

Q: Jill went up the hill.
then the given statement can be written in symbolic form as P A Q. /1Y

So far we have seen that the symbol A is used as a translation of the con-
nective “‘and’ appearing in English. However, the connective “and’’ is sometimes
used in a different sense, and in such cases it cannot be translated by the symbol
A defined above. In order to see this difference, consider the statements:

1 Roses are red and violets are blue.
2 He opened the book and started to read.
8 Jack and Jill are eousins.

In Statement (1) the conjunction “and” is used in the same sense as the symbol
A. In (2) the word ““and’’ 1s used 1n the sense of ““and then,” because the action
described in “he started to read” occurs after the action deseribed in “he opened
the book.” In (3) the word “and” 1s not a conjunction. Note that our definition
of conjunction is symmetric as far as P and @ are concerned; that is to say, the
truth values of P A Q and of Q A P are the same for specific values of P and Q.
Obviously the truth value of (1) will not change if we write it as

Violets are blue and roses are red.

On the other hand, we cannot write (2) as
He started to read and opened the book.

These examples show that the symbol A has a specific meaning which corre-
sponds to the connective “and’” in general, although ‘““and’ may also be used with
some other meanings. Some authors use the symbol &, or a dot, or “AND” to
denote the conjunction, Note that the conjunction is a binary operation in the
sense that it connects two statements to form a new statement.

1-2.3 Disjunction

The disjunction of two statements P and @ is the statement P Vv @ which is read
as “P or Q.” The statement P V @ has the truth value F only when both P and
Q have the truth value F; otherwise it is {rue. The disjunction is defined by
Table 1-2.3.

Table 1-2.3 TRUTH TABLE FOR
DISJUNCTION

"o

Q PVQ

R R B
i B B B |
B B B

12 conwEcCTIVES 11

The connectives ~ | and A defined earlier have the same meaning as the words
“not” and “and” in general. However, the connective V is not always the same
as the word “or”’ because of the fact that the word “or’’ in English is commonly
used both as an “exclusive OR” and as an “inclusive OR.” For example, consider
the following statements:

1 1 shall watch the game on television or go to the game.
2 'There is something wrong with the bulb or with the wiring.
8 Twenty or thirty animals were killed in the fire today.

In Statement (1), the connective ““or” is used in the exclusive sense; that
is to say, one or the other possibility exists but not both. In (2) the intended
meaning is clearly one or the other or both. The connective “or” used in (2) is
the “inclusive OR.” In (3) the “or” is used for indicating an approximate num-
ber of animals, and it is not used as a connective.

From the definition of digjunction it is clear that V 1s “inclusive OR.” The
symbol V comes from the Latin word “‘vel” which is the “inclusive OR.” It is
not necessary to introduce a new symbol for “‘exclusive OR,” since there are
other ways to express it in terms of the symbols already defined. We demonstrate
this point in Sec. 1-2.14,

Normally in our everyday language, the disjunction “‘or” is used between
two statements which have some kind of relationship between them. It is not
necessary in logic that there be any relationship between them according to the
definition of disjunction. The truth value of P V @ depends only upon the truth
values of P and Q. As before, it may be necessary to paraphrase given statements
in English before they can be translated into symbolic form. Similarly, transla-
tions of statements from symbolic logic into statements in English may require
paraphrasing in order to make them grammadtically acceptable.

1-2.4 Statement Formulas and Truth Tables

We have defined the connectives —|, A, and V so far. Other connectives will be
defined subsequently. We shall occasionally distinguish between two types of
statements in our symbolic language. Those statements which do not contain
any connectives are called alomic or primary or simple stalements. On the other
hand, those statements which contain one or more primary statements and some
connectives are called molecular or composite or compound statements. As an ex-
ample, let P and @ be any two statements. Some of the compound statements
formed by using P and @ are

W Pve (PAQVOIP) PA(R) (1)

The compound statements given above are statement formulas derived from the
statement variables P and @. Therefore, P and @ may be called the components
of the statement formulas. Observe that in addition to the connectives we have
also used parentheses in some cases in order to make the formula unambiguous.
We discuss the rules of constructing statement formulas in Sec. 1-2.7.

Recall that a statement formula has no truth value. It is only when the
statement variables in a formula are replaced by definite statements that we get

12 MATHEMATICAL LOGIC

a statement. This statement has a truth value which depends upon the truth
values of the statements used in replacing the variables.

In the construction of formulas, the parentheses will be used in the same
sense 1n which they are used in elementary arithmetic or algebra or sometimes
in a computer programming language. This usage means that the expressions
in the innermost parentheses are simplified first. With this convention in mind,
(P A Q) means the negation of P A Q. Similarly (P A Q) V (@ A R) means
the disjunction of P AQ and Q A R. ((P A Q) V R) A (T]P) means the
conjunction of ~ P and (P A Q) V R, while (P A @) V R means the disjunc-
tion of P A Q and R.

In order to reduce the number of parentheses, we will assume that the nega-
tion affects as little as possible of what follows, Thus 7P Vv @ is written for
(" 1£) V @, and the negation means the negation of the statement immediately
following the symbol ~]. On the other hand, according to our convention,
(P A Q) V R stands for the disjunction of 7](P A @) and R. The negation
affects P A Q but not R.

Truth tables have already been introduced in the definitions of the connec-
tives. Our basic concern is to determine the truth value of a statement formula
for each possible combination of the truth values of the component statements.
A table showing all such truth values is called the {ruth table of the formula. In
Table 1-2.1 we constructed the truth table for —|P. There 1s only one component
or atomic statement, namely P, and so there are only two possible truth values
to be considered. Thus Table 1-2.1 has only two rows. In Tables 1-2.2 and 1-2.3
we constructed truth tables for P A @ and P V @ respectively. These statement
formulas have two component statements, namely P and @, and there are 22 pos-
sible combinations of truth values that must be considered. Thus each of the two
tables has 22 rows. In general, if there are n distinet components in a statement
formula, we need to consider 2 possible combinations of truth values in order
to obtain the truth table.

Two methods of constructing truth tables are shown in the following
examples.

EXAMPLE 1 Construet the truth table for the statement formula P vV Q.

soLUTION It is necessary to consider all possible truth values of P and Q.
These values are entered in the first two columns of Table 1-2.4 for both methods.
In the table which is arrived at by method 1, the truth values of ~] are entered

Table 1-2.4a Table 1-2.45
P Q 1Q Py 710 P Q P W B Q
T T F T T T T T F T
T F T T T F T T T F
F T F F F T F F F T
F F T T F F F T T F
Method 1 Step
Number 1 3 2 1

Method 2

1-2 CcONNECTIVES 13

in the third column, and the truth values of P V 7|Q are entered in the fourth
eolumn. In method 2, as given in Table 1-2.4b, a column is drawn for each state-
ment as well as for the connectives that appear. The truth values are entered
step by step. The step numbers at the bottom of the table show the sequence
followed in arriving at the final step. /117

EXAMPLE 2 Construet the truth table for P A 7 |P.

soLuTIiION See Table 1-2.5. Note that the truth value is F for every pos-
gible truth value of P, In this special case, the truth value of P A " |P is inde-
pendaent of the truth value of P, | 1/

EXAMPLE 3 Construct the truth table for (P v Q) VvV " |P.

soLUTION See Table 1-2.6. In this case the truth value of the formula
(P v Q) v T|Pisindependent of the truth values of P and Q. Thisindependence
is due to the special construction of the formula, as we shall see in Sec. 1-2.8,

/11
Table 1-2.5
P P PA TP P P A m P
T F F T T F F T
F T F F F F T F
Method 1 Step
Num-
ber 1 3 2 1
Method 2
Table 1-2.6
P 0 PVQ i (PVQ)V TP
T T T F T
T F T F T
F T T T T
F F F T T
Method 1
P 0 (P V Q) \" "3 P
T T T T T T F T
T F T T F T F T
F T F T T T T F
F F F F F T T F
Step
Number 1 2 1 3 ? 1

Method 2

14 MATHEMATICAL LOGIC

Observe that if the truth values of the component statements are known,
then the truth value of the resulting statement can be readily determined from
the trutn table by reading along the row which corresponds to the correct truth
values of the component statements.

EXERCISES 1-24

1 Using the statements
R: Mark is rich.
H: Mark is happy.

write the following statements in symbolic form:
(@) Mark is poor but happy.
(h) Mark 1s rich or unhappy.
(¢) Mark is neither rich nor happy.
(d) Mark is poor or he is both rich and unhappy.
2 Construet the truth tables for the following formulas.

(a) “1C71PV 71Q)

(b) “1C71P A T1Q)

(¢} PA(PVQ)

(d) PA{(QAP)

e) CIPALTIRARDVQARV(PAR)
(NPAQVIUIPAQVI(PA IRV UIPATIQ)

8 For what truth values will the following statement be true? ““It is not the case that
houses are cold or haunted and it is false that cottages are warm or houses ugly.”
(Hint: There are four atomic statements.)

4 Given the truth values of P and @ as T and those of R and S as F, find the truth values

of the follvwing:

(a) PV (Q A R)

(B) (PAQAR)V THUPV QI A (RV S))

(o) CHUPAQV TIRIVUTIPAQ NV TIRIAS)

1-2.5 Logical Capabilities of Programming Languages

In this seetion we discuss the logical connectives available in certain programming
languages and how these connectives can be used to generate a truth table for
a statement formula. The logieal connectives discussed thus far are available in
most programming languages. In PL/I, the connectives A, V, and ~ | are written
as &, |, and "] respectively. The truth values 7" and F are written as ‘I'B and
‘0’B respectively. In ALGOL the connectives are represented as we have wriiten
them, while T and F are written as true and false respectively. FORTRAN also
permits the use of logical variables and expressions. and it is these facilities which
are to be discussed in this section,

In FORTRAN, the truth values T and F are denoted by the logical con-
stants . TRUE. and .FALSE. respectively. Logical variables and expressions in
the language assume only one of the logical values at any given time. All logical
variables must be explicitly declared as in the statement

LOGICAL P, Q, R
which declares the three vanables P, Q, and R.

I-Ecannnmls

The statement that a relation exists between arithmetic expressions is itself
an expression that has a truth value; in FORTRAN, these expressions are formu-
lated from the following relational operators:

LT.(<) .LE(<) .EQ(=) .GE.(2) .GT.(>) .NE.(#)
For example, if P has been declared LOGICAL, the statement
P=5%2.LT.17

assigns a value of .TRUE. to P. Similarly, if @ has been appropniately declared,
the statement
Q=A4+5.GE.C+D

assigns the value . TRUE. to Q if A + 5 is greater than or equal to C 4+ D when
the statement is executed, and the value . FALSE, otherwise.

From the truth values arsing, for example, from relations, more complex
logical expressions can be obtained in FORTRAN by using one or more of the
three logical connectives previously discussed. The logical operators .AND.,

OR., and NOT. correspond to the symbolie logical operators A, V, and |
respectively. The statement

PV (THQ A R))
is equivalent to the FORTRAN statement
P.OR. (NOT. (Q.AND. R))

Unnecessary parentheses are avoided in FORTRAN by using the following
precedence scheme, The arithmetic operators, with their usual order of prece-
dence, are the highest in rank and are consequently evaluated first, All relational
operators have the same rank and are evaluated after the arithmetic operators.
The logical operators are the last to be evaluated, and .NOT., .AND., and .OR.
18 their decreasing order of precedence. Of two or more binary operators having
the same precedence value in an expression, the leftmost is evaluated first; for
unary operators, it is the rightmost which is evaluated first. Thus, NOT. P
AND. Q means ((NOT. P) AND. Q; and A 4+ B 4+ 5.0 .LT. C + D means
((A+ B) + 5.0) .LT. (C 4+ D).

FORTRAN has a logical “IF statement” whose form is

IF (logical expression) statement

If the logical expression in the “1F statement’ is true, then the statement follow-
ing the expression is executed; otherwise, it is skipped. For example, when the
statement

IF ((NOT. P .OR. Q) GO TO 100
is executed, 1t will not transfer control to statement 100 if P and Q have the

values . TRUE. and .FALSE. respectively.
Arrays of logical variables ean also be used in FORTRAN. The statement

LOGICAL CASE(10)

declares a one-dimensional array of type LOGICAL consisting of 10 elements.
Elements of logical arrays are referenced in the same manner as any other sub-
scripted varable.

16 MATHEMATICAL LOGIC

Consider the problem of generating all possible assignments of truth values
to the logical variables P, @, and R, as shown in Table 1-2.7. There are 2* = §
possible assignments. Notice that the truth value of the variable P remains at
the same value of T or F for each of four consecutive assignments of logical
values. The values of variables and K remain at T or F for two assignments
and one assignment of logical values respectively. The value of variable R changes
more fiequently than the value of variable @, and that of Q more frequently than
that of P. The number of times the kth logical variable remains at a constant
truth value can be easily computed and is denoted by BASE[k]. In the case
under discussion, we have three variables, and the values can be computed as

BASE[K] = 20 k=1,2,3

where we have associated BASE[1], BASE[2], and BASE[3] with variables
P, @, and R respectively.

In addition to computing the BASE elements, we also need to know the
number of assignments which remain to be generated with a particular logical
variable remaining at the same value. For example, if we had already generated
the assignments TTT and TTF, then variable P would remain at its present
value of T throughout the generation of the next two assignments. This in-
formation is stored in an element denoted by LENGTH[k]. For variable P,
LENGTH[17] would have a value of 2 after generation of TTT and TTF. The
LENGTH vsalues associated with variables P, @, and R are initially the same as
their corresponding BA SE values. Therefore, initially

LENGTH[k] = BASE[k] k=123

Every time an assignment is generated, each element of LENGTH is decremented
by 1. When the LENGTH value associated with a variable becomes zero, then
the truth value of that variable is negated, and the LENGTH value is reset to
the BASE value. The algorithm for the generation of such assignments can now
be precisely formulated.

Table 1-2.7
P Q R
[T T T}|——BASE[3]
T T F
BASE[1}— {
T F T
T F F
F T T
BASE(2)
F T F
F F T
F F F

1-2 CONNECTIVES 17

Algorithm NEXT Given n logical variables having values stored in CA SE[1],
CASE[2], ..., CASE[n] and two vectors BASE and LENGTH each having
n elements, it is required to generate the next assignment of truth values for
these variables.

1 [Initialize counter] Set k « 1.

2 [Decrement LENGTH([k]] Set LENGTH[k]« LENGTH[k] — 1.

3 [Negate variable and reset LENGTH[k]?] If LENGTH[k] = 0 then
set CASE[k] « TICASE[k] and LENGTH[k] «— BASE[k].

4 [Increment counter] Set k « &k 4+ 1. If k£ < n then go to step 2; other-
wise Exit. 11/

A program for algorithm NEXT is given in I'ig. 1-2.1. The subroutine has
the four parameters CASE, N, BASE, and LENGTH. All parameters except N
are arrays. The logical array CASE contains an assignment of truth values for
the logical variables from which the subroutine is to generate a new assignment
of values. I'or example, for the case of three logical variables, CASI(1), CASE(2),
and CASE(3) could be associated with the variable names P, Q, and R respec-
tively. The new assignment of truth values is returned to the main program via
the logical array CASE,

Let us now consider the problem of constructing a truth table for a state-
ment formula, The following straightforward algorithm uses the various logieal

arrays such as CASE, BASE, and LENGTH which were discussed in algorithm
NEXT.

Algorithm TRUTH Given a statement formuia in n variables and subalgorithm
NEXT which generates a new assignment of truth values, it is required to con-
struct a truth table for the given statement formula,

1 [Initialize] Repeat for k = 1,2, ..., n: Set BASE[k] « 200
LENGTH{k] «— BASE[L], and CASE[k] « F. Set i +— 1 and print
headings for the truth table. |

2 [Evaluate statement] Substitute the logical values in array CASE

into the statement formula. Print the values in array CASE and the
value of the statement.

8 [Obtain next assignment for variables] Invoke subalgorithm NEXT,

SUBROUTINE NEXTICASE,NyBASE,LENGTH)
C GENERATE THE NEXT ASSIGNMENT OF LOGICAL VALUES.

LOGICAL CASEIN)

INTEGER BASFIN),.LENGTHIN)

DO 1 K = 14N

LENGTHIK]) = LENGTHIK) - 1

IFILENGTHIK) NELO) GO TO 1

CASEIK) = JNDV,.CASELK)

LFNGTHIK) = BASEIK)

1 CONTINUE
END

FIGURE 1-2.1 Program for algorithm NEXT.

18 MATHEMATICAL LOGIC

4 [Increment counter] Set ¢ «— ¢ + 1. If i < 2= then go to step 2; other-
wise Exit. /717

The FORTRAN program for the algorithm is given in Fig. 1-2.2. As an
example, the formula

HPAQ)V(RVP)

was used 1n the program. The program consists of a main program, a subroutine,
and a function. The subroutine NEXT, given in Fig. 1-2.1, generates an assign-
ment each time it is invoked. The function LOGIC is very simple, and its purpose
is to generate a single truth value for the statement formula each time the func-
tion is invoked. The number of logical variables in the given statement formula
and their associated values are passed to the function LOGIC by using the in-
teger variable N and the logical vector CASE respectively.

For our example, the variables P, Q, and R are denoted in the program by
the subscripted variables CASE(1), CASE(2), and CASE(3) respectively.

Each time the main program needs a new assignment of truth values for the
variables, it calls on procedure NEXT after which the funetion LOGIC isinvoked
to evaluate the statement formula for this new assignment of values. The main
program computes the BASE and LENGTH vectors for subroutine NEXT.

Initially, all logical variables are set to false, which enables subroutine
NEXT to obtain the next assignment. Note that all variables eould have been
set to true instead. This assignment, of course, would have produced a truth
table with the same information as shown in the sample output but in a different
order,

1-2.6 Conditional and Biconditional

If P and @ are any two statements, then the statement P — @ which is read
as “If P, then Q" is called a conditional statement. The statement P — @ has
a truth value F when @ has the truth value F and P the truth value T'; otherwise
it has the truth value T. The conditional is defined by Table 1-2.8.

The statement P is called the antecedent and Q the consequent in P — Q.
Again, according to the definition, it is not necessary that there be any kind of
relation between P and @ in order to form P — Q.

Table 1-28 TRUTH TABLE FOR
CONDITIONAL

"o
o

P—=Q

o Bl B
B e N
= wg

1-2 coNNECTIVES 19

VALUE: LOSICAL VALUE DF STATEMENT FORMULA
NUMRFR: MNUMBER OF ROWS IN THE TRUTH TABLE

Vs
F MATNLINE

C THIS PROGRAM FVALUATES A STATEMENT FORMULA
C AND GENERATES ITS TRUTH TABLE.

(o

C VARTABLES

C TITLE: TITLE FOR THE STATEMENT FORMULA

L MNAME: VARTABLE NAMES

C

L

C

C

NECLAPATITNS AND TITLES
INTEGER®2 NAME([3)/'Pr ,9Qr "R
REAL®E TITLE(S)/ "aNOT (P *ANDaQID® s 'R lR,02,%,%P)
LOGICAL CASE(LO},LOGIC,VALUE
INTEGER BASE(1D) ,LENGTH(10}
C TINITIALIIF BASE, LENGTH, CASF, N, AND NJUMBER,
N = 13
MUMBER = 2 =
Dl"lllf.:l-phl
BASEIK) = 2 =% [N - K)
LFNGTHIK) = BASE({K)
CASF(K) = ,FALSE.
1 CONTINUF
r DOUTPUT HEADINGS
WRITE(S,10) TITLF
10 FORMAT (V1 13X," VARTABLES?,13X,44A8)
WRITE(I&,20) NAME

20 FORMAT (* ",8X,'CASE | 2 3% /9" Vo l3X31A2,42X) 21X "VALUE" /)

C FIND VALUE NF THF STATEMENT FORMULA, OUTPUT TRUT4 VALUES,
C BND GENERATT NEW TRUTH VALUES FOR THE LOGICAL VARTABLES.
D0 2 1 = 1,NUMRER
VALUE = LNDGICICASE.N)
WRITE(G6,30) (CASFIK)sK = 1,:N),VALUE
30 FORMAT(" 7, 13X,3(L1,3X%),23X,L1)
CALL NEXTICASE,N+BASE,LENGTH)
2 CONTINUYF
STap
END

LNGICAL FUNCTION LOGICICASE N)
C 'THIS FUNCTION DFFINFS THE STATEMENT FORMULA TO BE EVALUATED.
LOGICAL CASE(IN)

LOGIC = oNDOTLICASE(L)oANDLCASEL2)}.0RLICASEL3).ORLCASELL))

RETURN

END

VAR | ABLES NOTo{PaANDaV)aORLRLORLP)
CASE L 2 3

P 9 & VALUE

F F F T

F F T T

F T F T

F T 1 T

T F F T

r ¢ 1 T

T T ° T

T T T T

FIGURE 1-2.2 Program for generating truth tables—mainline and func-

tion LOGIC.

20 MATHEMATICAL LOGIC

EXAMPLE 1 Express in English the statement P — Q where
P: The sun is shining today.
Q:2+47>4.
soLuTIoN If the sun is shining today, then 2 + 7 > 4. e

The conditional often appears very confusing to a beginner, particularly
when one tries to translate a conditional in English into symbolic form. A variety
of expressions are used in English which can be appropriately translated by the
symbol —. It is customary to represent any one of the following expressions by
P—Q:

@ 1s necessary for P.
P is sufficient for Q.
Q if P,

P only if @.

P implies Q.

We shall avoid the translation ‘“‘implies.”” Although, in mathematics, the
statements ““If P, then @'’ and “P implies {”’ are used interchangeably, we want
to use the word “implies” in a different way.

In our everyday language, we use the conditional statements in a more
restricted sense. It is customary to assume some kind of relationship or implica-
tion or feeling of cause and effect between the antecedent and the consequent in
using the conditional. For example, the statement ““If I get the book, then I shall
read it tonight’” sounds reasonable because the second statement “I shall read it
(the book) tonight” refers to the book mentioned in the first part of the state-
ment. On the other hand, a statement such as “If I get the book, then this room
is red” does not make sense to us in our conventional language. However, ac-
cording to our definition of the conditional, the last statement 1s perfectly ac-
ceptable and has a truth value which depends on the truth values of the two
statements being connected.

The first two entries in Table 1-2.8 are similar to what we would expect
in our everyday language. Thus, if P is true and @ is true, then P — @ is true,
Similarly, if P is true and Q 1s false, then “If P, then Q"' appears to be false, Con-
sider, for example, the statement ‘If I get the money, then I shall buy the car.”
If I actually get the money and buy the car, then the statement appears to be
correct or true. On the other hand, if I do not buy the car even though I get
the money, then the statement is false. Normally, when a conditional statement
is made, we assume that the antecedent is true. Because of this convention in
English, the first two entries in the truth table do not appear strange. Referring
to the above statement again, if I do not get the money and I still buy the car,
it is not so clear whether the statement made earlier is true or false. Also, if 1
do not buy the car and I do not get the money, then it is not intuitively clear
whether the statement made is true or false, It may be possible to justify entries
in the last two rows of the truth table by considering special examples or even by
emphasizing certain aspects of the statements given in the above examples. How-
ever, it 1s best to consider Table 1-2.8 as the definition of the conditional in which
the entries in the last two rows are arbitrarily assigned in order to avoid any am-

O LG 2o

1-2 conxeEcTiVEs 21

biguity. Any other choice for the last two entries would correspond to some other
connective which has either been defined or will be defined. In general, the use
of “If ..., then ...” in English has only partial resemblance to the use of the
conditional — as defined here.

EXAMPLE 2 Write the following statement in symbolie form.

If either Jerry takes Caleulus or Ken takes Sociology,
then Larry will take English.

soLutioN Denoting the statements as

J: Jerry takes Caleulus.

K: Ken takes Sociology.

I.: Larrv takes English.
the above statement can be symbolized as

(J Vv K)—> L /11

EXAMPLE 3 Write in symbolic form the statement
The erop will be destroved if there 15 a flood.
soLUTION Let the statements be denoted as
(": The erop will be destroved.
F': There is a flood,

Note that the given statement uses “if”7 in the sense of “If ..., then ., .7 It is
better to rewrite the given statement as “If there is a flood, then the erop will
be destroved.” Now it is easy to symbolize 1t as

F—(C /11
EXAMPLE 4 Construet the truth table for (17— Q) A (Q —).

soLuTioN See Table 1-2.9. Note that the given formula has the truth
value T whenever both 7 and ¢ have identical truth values, /1]

If P and @ are any two statements, then the statement 2 & (2, which is
read as ‘P if and only if Q" and abbreviated as “? iff (," is called a biconditional
statement., The statement 7 &2 Q has the truth value T whenever both /2 and

Table 1-2.9

-

Q P—Q Q=P P—-QA@Q@—=P)

T i T T T
T F F T F
F T Tr ¥ F
F F r v i T

Table 1-2.10 TRUTH TABLE FOR

BICONDITIONAL
P O P20
T T T
T F F
F T F
F F T
Table 1-2.11
P Q@ PAQ TPAQ@ P Q0 PV TWPAQZ(TIPVIO)
T T T F F F F T '
T F F T F T T T
F T F T T F T r
F F F T T T T T

Q have identical truth values. Table 1-2.10 defines the biconditional. The state-
ment P & @ 15 also transiated as “P is necessary and sufficient for Q."”” Note that
the truth values of (P — Q) A (@ — P) given in Table 1-2.9 are identieal to the
truth values of P & @ defined here.

EXAMPLE 5 Construct the truth table for the formula

MPAQ=2(C1PVTIQ)
soLUTION See Table 1-2.11. Note that the truth values of the given for-

mula are T for all possible truth values of P and Q. /117

EXERCISES 1-2.6

1

Show that the truth values of the following formulas are independent of their com-
ponents.

(@) (PA(P>Q))—@Q

(b) (P—@Q)2(1PV Q)

(¢) ((P—=Q) A (Q—R))—(P—R)

(d) (PRQ=2(PAQV(IPATIQ)

Construct the truth tables of the following formulas.

(@) QA (P—Q))— P .

(B 1PV QA R)=((PVQ) A (PVR))

A connective denoted by V/ is defined by Table 1-2.12, Find a formula using P, Q, and
th%mnmtim A, V, and | whose truth values are identical to the truth values of
PV Q.

Given the truth values of P and Q as T and those of R and S as F, find the truth values
of the following:

(a) CHPAQVTIR)V ((QE"1P)—(EV 18))

(b) (P2R) A(TIQ—8)

() (PV(Q—=(RATIP))=(QVTIS)

1-2 CONNECTIVES 23

Table 1-2.12
P o PVQ
T T F
T F T
F T T
F F F

1-2.7 Well-formed Formulas

The notion of a statement formula has already been introduced. A statement
formula is not a statement (although, for the sake of brevity, we have often
called it a statement) ; however, a statement can be obtained from 1t by replacing
the variables by statements, A staiement formula is an expression which is a string
consisting of variables (capital letters with or without subseripts), parentheses,
and connective symbols. Not every string of these symbols is a formula. We shall
now give a recursive definition of a statement formula, often called a well-formed
formula (wff). A well-formed formula can be generated by the following rules:

1 A statement variable standing alone is a well-formed formula.

2 If A is a well-formed formula, then ~]A 1s a well-formed formula.

3 If A ard B are well-formed formulas, then (A A B), (4 V B), (4 — B),
and (A = B) are well-formed formulas,

4 A string of symbols containing the statement variables, connectives,
and parentheses i1s a well-formed formula, iff it can be obtained by finitely many
applications of the rules 1, 2, and 3.

According to this definition, the following are well-formed formulas:

PAQ) THPVE (Po(PVQ)) (PoU—R)
(P-=Q) AN Q—R))=2(P—oR))
The following are not well-formed formulas.

I T1P A Q. Obviously P and @ are well-formed formulas. A wff would
be either (T [P A Q) or " [(P A Q).

2 (P->Q)— (A Q). This is not a wif because A @ is not.

3 (P — Q. Note that (P — Q) i1s a wif.

4 (P A Q) — Q). The reason for this not being a wii is that one of the pa-
rentheses in the beginning ismissing. ({(P A Q) —» Q)i1sawff, while (P A Q) — @
18 still not a wif.

It 1s possible to introduce some conventions so that the number of paren-
theses used can be reduced. In fact, there are conventions which, when followed,
allow one to dispense with all the parentheses. We shall not discuss these conven-
tions here. For the sake of convenience we shall omit the outer parentheses. Thus
we write P A Qinplaceof (P A), (P A Q) — Qinplace of ((P A Q) — Q),
and ((P—=Q) A (Q—=R) =2(P—>R)instead of (({(P=Q) A (Q—R)) 2
(P — R)). Since the only formulas we will encounter are well-formed formulas,
we will refer to well-formed formulas as formulas.

24 MATHEMATICAL LOGIC

1-2.8 Tautologies

Well-formed formulas have been defined. We also know how to construct the
truth table of a given formula. Let us consider what a truth table represents, If
definite statements are substituted for the variables in a formula, there results
a statement. The truth value of this resulting statement depends upon the truth
values of the statements substituted for the variables. Such a truth value appears
as one of the entries in the final column of the truth table. Observe that this
entry will not change even if any of the definite statements that replace particular
variables are themselves replaced by other statements, as long as the truth values
associated with all variables are unchanged. In other words, an entry in the final
column depends only on the truth values of the statements assigned to the vari-
ables rather than on the statements themselves. Different rows correspond to
different sets of truth value assignments. A truth table is therefore a summary
of the truth values of the resulting statements for all possible assignments of
values to the variables appearing in a formula, It must be emphasized that a
statemen* formula does not have a truth value. In our discussion which follows
we shall, for the sake of simplicity, use the expression ‘“the truth value of a state-
ment formula’” to mean the entries in the final column of the truth table of the
formula.

In general, the final column of a truth table of a given formula contains
both T and F. There are some formulas whose truth values are always T or
always F regardless of the truth value assignments to the variables, This situ-
ation occurs because of the special construction of these formulas. We have
already seen some examples of such formulas.

Consider, for example, the statement formulas PV " |JPand P A " |P in
Table 1-2.13. The truth values of P v " |P and P A " }P, which are T and F
respectively, are independent of the statement by which the variable P may be
replaced.

A statement formula which is true regardless of the truth values of the
statements which replace the variables in it is called a universally valid formula
or a lautology or a logical truth. A statement formula which 1s false regardless of
the truth values of the statements which replace the variables in it 1s called a
coniradiction. Obviously, the negation of a contradiction is a tautology. We may
say that a statement formula which is a tautology is tdentically true and a formula
which is a contradiction is identically false.

A straightforward method to determine whether a given formula is a
tautology is to construct its truth table. This process can always be used but
often becomes tedious, particularly when the number of distinet variables is
large or when the formula is complicated. Recall that the numbers of rows in a
truth table is 2*, where n is the number of distinet variables in the formula. Later,

Table 1-2.13

P P Py P PATIP
T F T F

F T T F

1-2 CconNNECTIVES 25

alternative methods will be developed that will be able to determine whether
a statement formula is a tautology without having to construct its truth table,

A simple fact about tautologies is that the conjunction of two tautologies
is also a tautology. Let us denote by A and B two statement formulas which are
tautologies. If we assign any truth values to the variables of A and B, then the
truth values of both A and B will be T. Thus the truth value of A A B will be
T, so that A A B will be a tautology.

A formula A is called a substitufion instance of another formula B if A can
be obtained from B by substituting formulas for some variables of B, with the
condition that the same formula is substituted for the same variable each time
it occurs. We now illustrate this concept. Let

B:P— (J A'P)
Substitute R = 8 for P in B, and we get
A: (R28)—-» (A (Re=8))
Then A is a substitution instance of B. Note that
(Re=8) — (J AP)

is not a substitution instance of B because the variable P inJ A P was not re-
placed by B & S. It is possible to substitute more than one variable by other
formulas, provided that all substitutions are considered to occur simultaneously.
For example, substitution instances of P — 7| are

I (RATIS) - 71(J V M)
2 (RATI8) = "R A TIS)
8 (RATIS)—-"IP
4 @-"HPATIQ

In (2) both P and Q have been replaced by BE A " |S. In (4), P is replaced by
Qand § by P A T 1Q.
Next, consider the following formulas which result from P — 7)Q.

1 Substitute P V @ for P and R for @ to get the substitution instance
(PVQ)— 1R

2 VFirst substitute P VvV @ for P to obtain the substitution instance
(P V Q) — 1Q. Next, substitute R for @ in (P VvV @) — 1@, and we get
(P V R) — "|R. This formula is a substitution instance of (P V @) — 7@,
but it is not a substitution instance of P — 7@ under the substitution (P Vv Q)
for P and R for Q. This statement 1s true because we did not Lubstitute simul-
taneously as we did in (1).

It may be noted that in constructing substitution instances of a formula,
substitutions are made for the atomic formula and never for the molecular for-
mula. Thus P — @ is not a substitution instance of P — ~|R, because it is B
which must be replaced and not T\R.

The importance of the above concept lies in the fact that any substitution
instance of a tautology 1s a tautology. Consider the tautology P V ~ |P. Regard-
less of what is substituted for P, the truth value of P VV ~|P is always T. There-
fore, it we substitute any statement formula for P, the resulting formula will be

¥

26 MATHEMATICAL LOGIC

a tautology. Hence the following substitution instances of P V ~|P are tau-
tologies.

(R-=-8)V |(R—=S8)
((PVS) ARV TI{(PV S) AR)
(((FVTI@)—R)=28)V (((PVTIQ) —R)&8)

Thus, if it 1s possible to detect whether a given formula is a substitution
instance of a tautology, then it is immediately known that the given formula is
also a tautology. Similarly, one can start with a tautology and write a large
number of formulas which are substitution instances of this tautology and hence
are themselves tautologies.

EXERCISES 1-2.8

1 From the formulas given below select those which are well-formed aeccording to the
definition in See. 1-2.7, and indicate which ones are tautologies or contradietions.
(a) (P—(PV Q))

() (P—(]P))—1|P)
() ((TIQA P)A Q)
(d) (P—(Q—R))—>((P—>Q)—> (P—R)))

(e) (("1P—Q)—(@—P)))
(f) ((PA Q)& P)

2 Produce the substitution instances of the following formulas for the given substitutions.
(a) (((P—Q)— P)— P); substitute (P— Q) for Pand ((P A Q) — R) for Q.
(6) ((P—Q)— (Q— P)); substitute Q for P and (P A " |P) for Q.

8 Determine the formulas which are substitution instances of other formulas in the list
and give the substitutions,

(a) (P—(Q— P))

() (({(P=Q A(R—>S8))A(PVR)—(QVS))
(¢) (@Q— ((P—=P)—Q))

(d) (P> ((P—>(Q— P))— P))

(e) (((IR—=8)A(Q—=P))A(RVQ)—(8SV P))

1-2.9 Equivalence of Formulas

Let A and B be two statement formulas and let P, Py, ..., P, denote all the
variables occurring in both A and B. Consider an assignment of truth values to
Py, P, ..., P, and the resulting truth values of A and 8. If the truth value of
A is equal to the truth value of B for every one of the 2" possible sets of truth
values assigned to Py, Py, ..., P,, then A and B are said to be equivalent. Assum-
ing that the variables and the assignment of truth values to the variables appear
in the same order in the truth tables of A and B, then the final columns in the
truth tables for A and B are identical if A and B are equivalent.

Here are some examples of formulas which are equivalent. Verify their
equivalence by truth tables,

1 7T 1P 18 equivalent to P.
¢ PV P s equivalent to P.

1-2 conNNEcTIVES 27

3 (P A T1P) V Qis equivalent to Q.
4 P Vv T\Pisequivalent to Q V T1Q.

In the definition of equivalence of two formulas, it is not necessary to as-
sume that they both contain the same variables. This point is illustrated in the
examples given in (3) and (4) above. It may, however, be noted that if two
formulas are equivalent and a particular variable occurs in only one of them,
then the truth value of this formula is independent of this variable. For example,
in (3) the truth value of (P A " 1P) V @ is independent of the truth value of P.
Similarly in (4), the truth valuesof P vV " 1P and @ V "~ |Q are each independent,
of P and Q.

Recalling the truth table (Table 1-2.10) in the definition of the bicondi-
tional, it is clear that P & @ is true whenever both P and @ have the same truth
values. Therefore the statement formulas A and B are equivalent provided
A 2 B is a tautology; and, conversely, if A 2 B is a tautology, then A and B
are equivalent. We shall represent the equivalence of two formulas, say A and
B, by writing “A < B,” which is read as ““A 1s equivalent to B.” Note that the
expression ‘A <> B” which can also be displayed as

A= B

should be written as
IIAJ".' ﬁ‘ llB!l

according to the rules given earlier (in Sec. 1-1) regarding the use and mention
of expressions, Observe that “4 < B” is a statement in English (the metalan-
guage) and not in the object language. Also the symbol ‘<" is not a econnective
but a symbol in the metalanguage. Having noted this, we shall often drop the
quotation marks because this will not lead to any ambiguity.

Equivalence i1s a symmetric relation; that is, ““A 1s equivalent to B" is
the same as ‘B 1s equivalent to A.” Also if A & B and B & C, then 4 < C.
This relationship may also be expressed by saying that the equivalence of state-
ment formulas is transitive.

As in the case of tautologies, one method to determine whether any two
statement formulas are equivalent is to construct their truth tables. All com-
binations of truth values associated with the variables appearing in both formulas
are presented in the table, and the final columns (for the two formulas) are
compared.

EXAMPLE 1 Prove (P—Q) e (PV Q).

soLUTION See Table 1-2,14. Note that the truth values in the columns for
P —Q and 7P Vv Q are identical, and so the biconditional will have the truth
value T. To compare columns, it is not necessary to form the biconditional; thus
the last column could have been avoided. [/l

A list of some basic equivalent formulas which will be found useful is given
in Table 1-2.15. In order to make the list complete, we use T and F as special
variables in the sense that T can be replaced by only a tautology and F by only
a contradiction.

28 MATHEMATICAL LOGIC

Table 1-2.14

P Q0 P-Q WP PV (P-Q=2(IP VO
T T T F T T

T F F F F T

F T T T T T

F F T T : i -

In view of the associative laws, we can write (P V Q) V RasP Vv Q@ V R,
and (PAQ) ARasP A QA R.

In Table 1-2.15 we note that pairs of equivalent formulas are arranged
two to a line such as

Ao B A<= B,

For each pair A,, B, there is a corresponding pair A;, B; in which V is replaced
by A, Aby V,TbyF,and Fby T. A, and A; are said to be duals of each other,
'and so are B, and B;. Duality is discussed in Sec. 1-2.10.

In constructing substitution instances of a statement formula, we are
allowed to substitute only for the variables appearing in the formula. Further-
more, the same formula is to be substituted for every occurrence of a particular
variable. This rule ensures that substitution instances of a tautology are also
tautologies. Consider now another process, called a replacement process, in which
we replace any part of a statement formula which is itself a formula, be 1t atomic
or molecular, by any other formula. For example, in the formula (P A Q) —» P
we replace (P A Q) by R— (S A "|M) and the second P by (P A R) —
(TISV M) to obtain (R— (SA M) ((PAR)—-(TISVM)). In
general, a replacement yields a new formula, but it may not always be an interest-
ing formula. However, if we impose the restriction that any part of a given for-
mula that is to be replaced by another formula must be equivaient to that other
formula, then the result is equivalent to the original formula. By this process
one can obtain new formulas which are equivalent to the original formula. For
example, we can replace Pin P A Q by the formula PV P,since PV P& P,
to get (P V P) A Q which is equivalent to P A Q. Consequently, if we replace
any part or parts of a tautology by formulas that are equivalent to these parts,
we again get a tautology.

EXAMPLE 2 Showthat P— (Q—=R)eP-(1QVR)= (PAQ) - R

SoLUTION Recall from Example 1 that Q - R < 1@ vV R. Replacing
Q—Rby 1Q VR, weget P— ("]Q V R), which is equivalent to " |P V
(T1Q V R) by the same rule. Now

1PV IQRVE)«(I1PV R VE®S |(PAQ) VR
=(PAQ) —R

using associativity of V, De Morgan’s law, and the previously used rule. ////

1-2 CONNECTIVE: 29

(6)
(8)
(L)
(9)
(9)
(¥)
(€)
(@)
(1)

(smw] 5,usBI0py o(T)
(smw| uonydiosqy)

(sm®w] aarnquysi(y)
(8M8] 2AIBINIWION))
(Ba%] 2AIBID0SSY)
(emu] juejodwapy)

OL A dL =@ VL
de(OANd) Vd

dedl Vd

d=dVd

d=LVd

A VOANDVIEAD VI
dVO=0dVd

NV Vd=2EI VDV
ded VVd

OL VdL « (O A L

de D VIOAL

Ledl Ad

L=LAdJd

dedNd
HADVOAD=2E@VIOIAL
dAO=OANd
HADAISYADBOA L
d=dAd

SYINIWIOI INTTIVAINDA ST°2-1 39l

30 MATHEMATICAL LOGIC

EXAMPLE 3 Showthat ("PA (TIRAR))V (QAR)V (PAR)®R.

SOLUTION
(IPACIRAR)) V(QAR) V(P AR)

S(PA(CIRAR) V(QVP)AR) (4)

=((C1PA IR AR)V ((QVP) AR) (2)

S((TIPA RV QVEP)AR (4)

*(1H(PVQ VIIPVQ)AR (9), (3)

=<TAR (7)

=R (5)

The basic equivalent statement formulas used are denoted by the numbers on
the right-hand side which correspond to numbers in Table 1-2.15. FEFSs

EXAMPLE 4 Showthat (PV Q) A T1(TIPA (TIRV TIR)) V (TP A
—1Q) V (TP A TIR) is a tautology.

soLuTION Using De Morgan’s laws, we obtain

PATIReEe T (PVQ) 1P AR |(PVER)
(IPATIRQVIPATIR)=1(PVQ V I(PVR)
= [((PVQ A(PVR))
Also
MIPACRKRY IR« 1CIPA T(QAR))
&SPV QAR (PVQ A(PVRER

(PVQ APV A(PVR)=(PVQ AN(PVR)
Consequently, the given formula is equivalent to
(PVQA(PVE)YV I((PVQ A(PVR))
which is a substitution instance of P v ~|P. /1]

The equivalences given in Table 1-2.15 also describe the properties of the
operators A, V, and | on the set of statements in symbolic logie. It is shown
in Chap. 4 that the set of all statements under the operations A, V, and "]1s an
algebra called the statemeni algebra which is a particular example of a Boolean
algebra. A comparison of the statement algebra and the set algebra is given
in Chap. 2.

1-2.10 Duality Law

In this section we shall consider formulas which contain the connectives A, V,
and ~ |. There is no loss of generality in restricting our consideration to these
connectives since we shall see later that any formula containing any other con-
nective ean be replaced by an equivalent formula containing only these three
- connectives.

1-2 CcoNNECTIVES Jdl

Two formulas, A and A¥, are said to be duals of each other if either one can
be obtained from the other by replacing A by V and V by A. The connectives
A and V are also called duals of each other, If the formula A contains the special
variables T or F, then A*, its dual, is obtained by replacing T by Fand Fby T
in addition to the above-mentioned interchanges.

EXAMPLE 1 Writethedualsof (a) (PV Q) AR; (b)) (PAQ) VT; (¢
HPVQ APV TIQRATIS).

soLUTION The dualsare (a) (P A Q) VR, (b) (PV Q) AF, and (¢)
THPAQ)V (PA TRV TIS)). /117

The following theorem shows the equivalence of a formula and one that 1s
obtained from its dual.

Theorem 1-2.1 Let A and A* bhe dual formulas and let Py, P, ..., P,
be all the atomic variables that occur in A and A*. That is to say, we may
write A as A(Py, Py, ..., P,) and A¥ as A*(Py, P, ..., P,). Then through
the use of De Morgan’s laws

PAQe (TP V TIQ) Pv@ge 1P A IQ)

we can show
jA[PIrP!:-*"*!Pn}ﬁA*(jPI?jPﬂj*“:—lpﬂ) (l}

Thus the negation of a formula is equivalent to its dual in which every

variable is replaced by its negation. As a consequence of this fact, we also
have

APy |Pa oviy Pe) e APy, Py ooy Py) (2)

EXAMPLE 2 Verify equivalence (1) if A(P,Q, R) s [P A " |(Q V R).

soLUuTION Now A*(P,Q,R)is 1PV (@ A B),and A*(T|F, 1Q, 1K)
s 1PV TIC1I@ATIR)e= PV (@ V R). On the other hand, "J4 (P, @, R)
is T JCIPATIQV R)ePV (QVR). /117

We shall now prove an interesting theorem which states that if any two
formulas are equivalent, then their duals are also equivalent to each other. In

other words, if A & B, then A* & B*.

Theorem 1-2.2 Let Py, Ps, ..., P, be all the atomic variables appearing
in the formulas A and B. Given that A & B means “A & B is a tautology,”
then the following are also tautologies.

AP, Py, ..., Py)@B(P, Py, ..., Py)
AU 105 v 1A 2B P " 1Pyivia Wal
Using (2), we get
TVA*(Py, Py, ..., P,) & T|\B*(Py, Py, ..., P,)
Hence A* & B*.

32 MATHEMATICAL LOGIC

This theorem explains why in Table 1-2.15 we have for every pair of equiv-
alent formulas an equivalent pair of formulas consisting of duals of the first pair.

EXAMPLE 3 Show that

(@) MPAQ-(CIPV(IPVE))e=(CIPVQ)

&) (PVAOA(CIPACIPAQ)=(IPAQ)

SOLUTION

(a) THMPAQ —-(TIPV(TIPVE)
S (PAQ V (TIPV (TIPVQ) (3)
SPAQ VIIPVER)
S (PAQV IPVQ
e((PVIPIANRY TIP)) VEQ
SQV IP)VEesQYV 1P 1PV

From (3) it follows that

PAQ VTPV IPVR)e 1PV
Writing the duals, we obtain by Theorem 1-2.2 that

PVQACTIPACTIPAQ)) = IPAQ /117

1-2.11 Tautological Implications

Recall the definition of the conditional as given in Table 1-2.8, The connectives
A, V, and = are symmetric in the sense that PA Q<= QA P, PV Q&
QV P, and P2Q < @ = P. On the other hand, P — § is not equivalent to
Q— P.

For any statement formula P — @, the statement formula @ — P is called
its converse, ~ |P — ~|Q 1s called its 1nverse, and ~1Q — ~ |P is called its contra-
positive,

From Table 1-2,16 it is clear that

PoQeTIR- TP QoPe IPoTIQ

A statement A is said to lautologically imply a statement B if and only if
A — B is a tautology. We shall denote this idea by A = B which is read as
“A implies B.” Similar to the case with <, we note that = is not a connective
noris A = B a statement formula. Just as A < B states that A and B are equiv-

Table 1-2.16

' Q P 1Q P—0Q Q- TP
r T F F T T

T F F T F F

F T T F T T

F F T T T T

-2 CONNECTIVEE a3

alent or that A 2 B is a tautology, in a similar manner A = B statbsthat A — B
is a tautology or A tautologically implies B.

We have avoided using the expression “imply” to translate the conditional,
80 that we shall abbreviate “tautologically imply”’ simply as “imply."” Obviously
A = B guarantees that B has the truth value T whenever A has the truth
value T.

One can determine whether A = B by constructing the truth tables of A
and B in the same manner as was done in the determination of A < B.

The 1implications in Table 1-2.17 have important applications. All of them
can be proved by truth table or by other methods,

In order to show any of the given implications, it is sufficient to show that
an assignment of the truth value T to the antecedent of the corresponding con-
ditional leads to the truth value T for the consequent. This prucec{ure guarantees
that the conditional becomes a tautology, thereby proving the implication. In
(9), if we assume that ~ 1@ A (P — Q) has the truth value T, then both 71Q
and P — @ have the truth value T, which means that ¢ has the value F. P — Q
has the truth value T, and hence P must have the value F. Therefore the con-
gsequent |P must have the value T.

In (12), we assume that the antecedent is true. This assumption means that
PV Q P—R,and Q — R are true. If P is true, then R must be true because
P — R is true. If Q is true, then R must also be true. But at least one of P or Q
is true by our assumption that P V @ is true, and so R is true.

Another method to show P = @ is to assume that the consequent @ has
the value F and then show that this assumption leads to P’s having the value F,
Then P — Q must have the value T'.

In (9) assume that —|P is false, so that P 1s true, Then |Q A (P — Q)
must be false. This statement holds because if Q is true, then —]Q 1s false, while
if Q is false, then P — @ is false. Hence the implication in (9) is shown.

Example 4 in See. 1-2.6 shows the equivalence of the statements P 2 @
and (P—Q) A (@ — P); it is easy to verify that (P=@ and @ = P) iff
P < @. This statement is an alternative definition of the equivalence of two
formulas. If each of the two formulas A and B implies the other, then 4 and B
are equivalent.

Table 1-2.17 IMPLICATIONS

PAQ=P (1)
PAQ=Q (2)
P=PVQ (3)
IP=P - Q (4)
Q=P =@ (5)
WP —-Q =P (6)
WP —=Q) =" (7)
PA (P—Q) =@ (8)
WA P-Q="P (9)
IPA (P VQ)=0Q (10)
P-QANA@—-R=PFP—-R (11)

PVAOAP—-EA Q—ER)=Ek (12)

34 MATHEMATICAL LOGIC

There are several important facts about implication and equivalence that
should be observed. If a formula is equivalent to a tautology, then it must be
a tautology. Similarly, if a formula is implied by a tautology, then 1t is a tau-
tology.

Both implication and equivalence are transitive. To say that equivalence
it transitive means if A & B and B & (', then A < C. This statement follows
from the definition of equivalence. To show that the implication is also transi-
tive, assume that A = Band B=C. Then A — B and B — (are tautologies.
Hence (A — B) A (B — () is also a tautology. But from {11), (A — B) A
(B—C) = (A —(C). Hence A — (13 a tautology.

The transitivity of implications can also be applied in several stages. In
order to show that A = C, it may be convenient to introduce a series of formulas
By, Bs, ..., Basuchthat A= B, By=B,, ..., Bu_1 = B., and B, = C.

Another important property of implication is that if A = B and A = (,
then A = (B A). By our assumption, if A is true, then B and C are both true.
Thus B A C is true, and hence A — (B A C) is true.

We can extend our notion of implication P = € to the case where several
formulas, say Hy, Hs, ..., Ha, jointly imply a particular formula @; that is,
HI,HE, ...,Hm=Qmeans {Hl M Hg PSR Hﬂ.) :Q;

An important theorem which is used in Sec. 1-4.1 follows.

Theorem 1-2.3 If H,, H:, ceay Hu 8nd P imply Q then Hy, He, ..., Ha
imply P — Q.

PROOF From our assumption we have
(Hy ANHas A -+ ANHo A P)=(Q

This assumption means (Hy A Ha A -+ A Ha A P) — Q13 a tautology. Using
the equivalence (see Example 2, Sec. 1-2.9)

PI—-F(Pg-—}P]}"::?(PIﬂP:)—FP:

we can say that

(HyAHs A - AHp) = (P—-Q)
is a tautology. Hence the theorem. i

EXERCISES 1-2.11

! Show the following implications.
() (PA Q)= (P—Q)
() P= (Q— P)
(¢) (P—=(Q—R)=(P—-Q)—(P—R)
2 Show the following equivalences.
(¢) P— (@Q—P)e P—(P—Q)
(5) P2 (QV R)= (P—Q)V (P—R)
() (P2QQ A (R—Q e (PVR)—Q
(@) "1(P2Q=(PVQ ATIPAQ)

1-2 coNNECTIVES 35

8 Show the following implications without construeting the truth tables.
(a) P2Q=P—(PAQ)
(3) (P=Q)—Q=PVQ
(¢) (PV 1P)—Q)—= ((PV |P)— R)=(Q—R) (see Sec. 1-6.3)
(d) Q= (PATIP)) = (R—=(PATIP))=(R— Q) (see Bec. 1-6.3)
4 Show that P is equivalent to the following formulas.

TP PAP PVP PV(PAQ PA(PVQ

(PAQV (PATIQ) (PVQA(PVTIQ)

& Show the following equivalences.
(a) (PAQ&TIPV IR
() (PVQ)e= 1PA 10
(c) T(P—=Q)=PATIQ
(d) " (P2 (PATIRIVIIPAQ)

1-2.12 Formulas with Distinct Truth Tables

Using all the connectives defined so far and the rules for constructing well-formed
formulas, it is possible to construct an unlimited number of statement formulas.
We shall try to determine how many of these formulas have distinet truth tables.

Let us consider all possible truth tables that can be obtained when the
formulas involve only one variable P. These possible truth tables are shown in
Table 1-2.18.

Any formula involving only one variable will have one of these four truth
tables. Obviously the simplest formulas corresponding to the entries under
1, 2, 3, and 4 are P, 7P, P v 7 |P, and P A " |P respectively. Every other
formula depending upon P alone would then be equivalent to one of these four
formulas.

If we consider formulas obtained by using two vanables P and ¢ and any
of the connectives defined, we also obtain an unlimited number of formulas. The
number of distinct truth tables for formulas involving two variables is given by
2" = 2¢ = 16. Since there are 22 rows in the truth table and since each row could
have any of the two entries T or F, we have 22* possible tables, as shown in
Table 1-2.19.

Any formula involving only two varables will have one of these 16 truth
tables. All those formulas which have one of these truth tables are equivalent
to each other.

A statement formula containing n variables must have as its truth table
one of the 2*" possible truth tables, each of them having 2* rows. This fact sug-
gests that there are many formulas which may look very different from one
another but are equivalent.

Table 1-2.18

P 1 2 3 4

T T T F
F F T T F

36

MATHEMATICAL LOGIC

Table 1-2.19

11 12 13 14 16 16

10

C L

e, e, B B

Fry Py B B,

B Ry B B

R, B~ B, B,

B B B

B, B Bw R

e, By Bv B

ISR

B R, B, B

B B, B R

B B, By Ew

BBy R

Ev B By B

B B B B

BB

B B, B Ry

1-2 coNNECTIVEES 37

One method to determine whether two statement formulas A and B are
equivalent is to construct their truth tables and compare them, This method is
very tedious and difficult to implement even on a computer because the number
of entries increases very rapidly as n increases (note that 2~ 1,000). A better
method would be to transform 4 and B to some standard forms A’ and B’ such
that a simple comparison of A’ and B’ should establish whether A < B. This
method is feasible; the standard forms are called canonical forms or normal forms
and are discussed in Sec. 1-3.

1-2.13 Functionally Complete Sets of Connectives

So far we have defined the connectives A, V, " |, —, and 2. We introduce some
other connectives in Sec. 1-2.14 because of their usefulness in certain applica-
tions. On the other hand, we show in this section that not all the connectives
defined thus far are necessary. In fact, we can find certain proper subsets of
these connectives which are sufficient to express any formula in an equivalent
form. Any set of connectives in which every formula can be expressed in terms of
an equivalent formula containing the connectives from this set is called a func-
tionally complele set of connectives. It is assumed that such a functionally eom-
plete set does not contain any redundant connectives, 1.e., a connective which
can be expressed in terms of the other connectives,

In order to arrive at a functionally complete set, we first examine the follow-
ing equivalence:

P=Qe (P—Q) A Q—P)

This equivalence suggests that in any formula we can replace the part (here
“part” means any part which is itself a formula) containing the biconditional
by an equivalent formula not containing the biconditional. Thus all the bicondi-
tionals can be replaced in a formula.

EXAMPLE 1 Write an equivalent formula for PA (Q&2R) V (E2 P)
which does not contain the biconditional.

SOLUTION
PA(Q@=2R)V (R=P)
SPA(Q=R)AE—Q)V ((R-P)A(P—oR))

Thus the equivalent formula is P A ((Q—RE) A (BR—Q)) V{(E—=P) A
(P—R)). /1

Next we now consider the equivalence P — Q+ ~|P V Q. This equiv-
alence suggests that the conditionals can also be eliminated by replacing thase
parts which contain conditionals by their equivalents.

EXAMPLE 2 Write an equivalent formula for P A (@ & E) which con-
tains neither the biconditional nor the conditional. |

38 MATHEMATICAL LOGIC

SOLUTION
PA(Qa2R)ePA (R A(R—-Q))
SPA{(TIQVR)A(CIRV Q)
Thus the required formulais P A (T1Q V R) A (TIR V Q). /117

Notice that from De Morgan’s laws we have

PAQe 1(CIPYV 1) PVR=TI1CIPATIQ)

This first equivalence means that it is also possible to obtain a formula which is
equivalent to a given formula in which conjunctions are eliminated. A similar
procedure is possible for the elimination of disjunctions.

If we implement all the steps suggested above, we can first replace all bi-
conditionals, then the conditionals, and finally all the conjunections or all the dis-
junctions in any formula to obtain an equivalent formula which contains either
the negation and disjunction only or the negation and conjunection only. This
fact means that the sets of connectives { A, ~ 1} and |V, "]} are functionally
complete.

One can show that {7}, | A}, or | V] are not functionally complete and
neither 1s | A, V |.

I'rom the five connectives A, V, ~ |, —, & we have obtained at least two
sets of functionally complete connectives. A question arises whether there is any
one connective which is functionally complete. The answer to such a question
is no if only the above five connectives are considered. There are some connec-
tives, which are defined in Sec, 1-2,14, that are functionally complete. The ques-
tion of finding a functionally complete set with fewer connectives 1s not as theo-
retical as it may appear, because in physical two-state devices, which are de-
scribed in See. 1-2.15, the eonnectives correspond to certain physical elements
of the device. I'rom the point of view of maintenance and economieal production,
it 1s sometimes necessary not to use a variety of different elements.

Note that if a given formula is replaced by an equivalent formula in
which the number of different connectives is reduced, the resulting formula may
become more complex. This 1s why we use a larger number of connectives than
are needed. In Sec. 1-2.14 we define some more connectives which will be found
useful.

EXERCISES 1-2.13

I Wnte formulas which are equivalent to the formulas given below and which contain
the connectives A and | only.
(a) " (P (Q— (RV P)))
() ((PVQ) AR)—(PVR)

2 For each column in Table 1-2.19 write a formula, involving two variables P and Q,
whose truth table corresponds to the truth values in the column chosen.

3 Show tha. | A, V], IV}, and | 7]} are not functionally complete. (Hint: Write a
formula which is a tautology.)

1-2 cCcoONNECTIVES 39

1-2,14 Other Connectives

It was shown earlier that not all connectives defined thus far are necessary for
the description of the statement calculus. For any formula of the statement cal-
culus, there exists an equivalent formula in which appear only those connectives
belonging to one of the functionally complete sets. In spite of this fact, we did
define other connectives because, by using them, some of the formulas become
simpler. There are other connectives which serve similar purposes, and these will
be defined in this section.

Let P and @ be any two formulas. Then the formula P V @, in which the
connective V 1s called an exclusive OR, is true whenever either P or @, but not
both, is true. The exclusive OR is defined by Table 1-2.20. The exclusive OR
is also called the exclusive disjunction. The following equivalences follow from
its definition.

1 PVQeQVEP (symmetrie)
2 (PVQ VRePV (QVER) (associative)
38 PANQRVR=(PAQ VTV (PAR) (distributive)
4 (PVQePATIRVIIPAQ

5§ (PVQ e (Pa2@)

One can also prove that if PV Q& R, then PV R Qand Q V R < P, and
P V Q V R is a contradiction.

Given a formula in which V appears, it is possible to obtain an equivalent
formula in which only the connectives A, V, and | appear by using the equiv-
alence of the formulas in (4).

Other connectives which have useful applications in the design of com-
puters are called NAND and NOR. The word “NAND’’ is a combination of
“NOT” and “AND,” where “NOT” stands for negation and “AND’" for the
conjunction. The connective NAND is denoted by the symbol T. For any two
formulas P and @

PTQe HPAQ

Another connective, useful in a similar context, is known as NOR, a com-
bination of NOT and OR, where ‘“OR’ stands for the disjunction. The connective
NOR is denoted by the symbol | . For any two formulas P and @

PlQe 1PV

The connectives T and | have been defined in terms of the connectives
A, V, and ~|. Therefore, for any formula containing the connectives T or |,

Table 1-2.20

My ey | My
N O
MY

40 MATHEMATICAL LOGIC

one can obtain an equivalent formula containing the connectives A, V, and
"] only. Note that T and | are duals of each other. Therefore, in order to ob-
tain the dual of a formula which includes T or |, we should interchange 1
and | in addition to making the other interchanges mentioned earlier.

We now show that each of the connectives T and | is functionally com-
plete. In order to do this, it is sufficient to show that the sets of connectives
{A, 1} and {V, "]} can be expressed either in terms of T alone or in terms of
1 alone. The following equivalences express ~ |, A, and V in terms of T alone.

PTPe (PAPY) \PV T \Pe P
PTRTPTQ=1(PTQA=PAQ
PTPATRRTQAQeTIPT Re (IPATIR=PVQ

In a similar manner, the following equivalences express ~ |, V, and A in terms
of | alone

PlPes"(PVP)es PA WPe P
(Pl@Q) | (PlQe"PlQePVE
PlPYLlQRLQAe=eTIPL TIRSPAQ

Because a single operator NAND or NOR is functionally complete, we call
each of the sets { T} and { | | a minimal funclionally complete set, or, in short,
a minimal sel.

The idea of a minimal set of connectives 1s useful in the economics of the
design of electronic circuits. It may be noted that although we can express any
formula by an equivalent formula containing a single connective T or |, we
seldom do so because such formulas are often complicated. This fact explains
why programming languages as well as our symbolic language have a number of

connectives available.
We now list some of the basic properties of the connectives NAND and

NOR.

PTQeQ TP P|lQOQeQ | P (commutative) (1)
PTQTR)PT TIMQAR) (PATT(QAR))
& PV (QAR) (2)

while

PTQA TE=S(PAQ VIR
Thus the connective 7 is not associative. Similarly
PlQR|IR="TIPANQVE) (@PlQ|EsPVQATIR

It is possible todefine P T @ T R "1(PA Q A R). However, P T Q T R
is not equivalent to P T (@ T R) orto (P T Q) TRorto QT (P T R).
This nonassociativity of the connectives NAND and NOR creates some difficulty

in using them.
P1Qe PAQeTIPV Re(TIPAQ)
VIPATIQ)V (CIPATIR) (3)

1-2 CcoONNECTIVEsS 41

Similarly
PlQe (PVQRQ)eTIPATIRe(CTIPVQ)
APYVYTIQOA(CIPYVYTIQ) (4)

EXERCISES 1-2.14

1 If A(P,Q,R)isgivenby PT (@ A" (R] P)), find its dual A*(P, @, R). Also
find formulas which are equivalent to 4 and A®, but which contain the connectives
A, V, and "] only.

2 Express P— (" |P— Q) in terms of T only. Express the same formula in terms of
| only.

8 Express P T @ in terms of | only.

1-2.15 Two-state Devices and Statement Logic

The statement logic that we have discussed so far is called two-valued logic,
because we admit only those statements having a truth value of true or false.
A similar situation exists in various electrical and mechanical devices which are
assumed to be in one of two possible configurations; for this reason, they are
called two-state devices. We first give several examples of such commonly known
devices and then show their connection to two-valued logic.

An electric switch which is used for turning “on”’ and “off”’ an electric
light is a two-state device. Normally, such a switch is operated manually; how-
ever, if it is operated automatically by electric power, we say the switch is relay-
operated. A vacuum tube or a transistor is another two-state device in which
the current is either passing (conducting) or not passing (nonconducting). A
mechanical clutch can be engaged or disengaged. A small doughnut-shaped metal
disc with a wire coil wrapped around it (called a magnetic core in computers)
may be magnetized in one direction if the current is passed through the coil in
one way and may be magnetized in the opposite direction if the current is re-
versed. Many other examples of two-state devices can be cited. A general dis-
cussion of such devices can be given by replacing the word “switch’” by the word
“gate’”’ to mean a device which permits or stops the flow of not only electric
current but any quantity that can go through the device, such as water, informa-
tion, persons, etc.

Let us first consider the example of an electric lamp controlled by a me-
chanical switch. Such a circuit is displayed in Fig. 1-2.3. When the switch p is
open, there is no current flowing in the circuit and the lamp s 1s “off.”” When p
is closed, the lamp s is ““on.” The state of the switch and the lamp can be repre-
sented by the table of combinations in Fig. 1-2.3. Let us denote the statements
as

P: The switch p 1s closed.

S: The lamp s 1s on.

Switch p
"0
il State of switch p State of light s
Battery __— . Lamp s closed on
open off
Ground

FIGURE 1-2.3 A switch as a two-state device.

Then we can rewrite the table of Fig. 1-2.3 as

p(P) s(S)

1
0

=

Throughout this section we shall denote the truth values of statements
P,Q, ... by 1 and 0 in place of T and F respectively. At the same time, the
input switches such as p or the output indicator such as the lamp s will be as-
signed the values 1 and 0 to correspond to the states when the eurrent is flowing
or not flowing. In such cases the table shown here can be understood to be either
a truth table or a table that relates the input and the output values.

Next, consider an extension of the preceding circuit in which we have two
switches p and ¢ In series. The lamp s 1s turned on whenever both the switches
p and g are closed. Such a eircuit with its table of combinations is shown in Fig.
1-2.4. In the table, we have used the statements

P: The switch p is elosed.

Q: The switch ¢ is closed.

S: The light s is on.
From the table it is clear that P A Q@ & 8.

Switch p Switch ¢
— O 0

Lamp s

=T - TC R
O -0 =D
e = - T

i+

FIGURE 124 A two-state device for AND logie.

1-2 cownEcmivEs 43

Switch p
O
Switchq_»_ i Plols
BERE
e Lamp s 1]01]1
B‘“”"TT ol1]1
olofo
Ground

FIGURE 1-2.5 A two-state device for OR logic.

Figure 1-2.5 contains a ecircuit and its associated table of combinations in
which two switches are connected in parallel. From the table it is clear that
Pv Qe S

We have just shown how the connectives A and V correspond to switches
connected in serles and in parallel, respectively.

We now consider an example of a switch controlled by a relay. A simplified
configuration and its associated table of combinations are given in Fig. 1-2.6.
When the switch p is open (P is false, because we shall use P: The switch p is
closed.), no current flows and the contact ¢ which is normally closed remains
closed and the contact r remains open. When p is closed, the current will flow from
the battery through the coil which will cause the movement of a relay armature,
which in turn causes the springs to move downward and the normally closed con-
tact ¢ to open while the normally open contact r closes. If p is opened, then the
contact ¢ closes and r opens because the spring moves upward to its original posi-
tion. Thus with the statements P, @, and R denoting the switches p, g, and r to
be closed respectively, we can represent the operation of the device by the table
of combinations in Fig. 1-2.6. In fact, the switches ¢ and r are always in the op-
posite states, that is, Q & "R, @ & " |P, and R < P. Note that the output Q
18 the negation of the input P.

Contact
O normally
Springs are moved downward 1 Py
when current is passed through
the coil. q
J Contact
O normally

=S
/’

P

Battery

11l

P|Q
—_ 1 (0|1
1

Ground 0
FIGURE 1-26 A relay-switching device.

44 MATHEMATICAL LOGIC

Instead of representing the logical connectives |, V, and A by the cir-
cuits just given or by some other equivalent circuits (consisting of semiconductor
devices, for example), they are generally represented by block diagrams or gaies.
Each gate has one or more input wires and one cutput wire.

The logical connectives |, V, and A will be denoted by the symbols —,
+, and - respectively in the remainder of this section. This denotation is in keep-
ing with the terminology used in switching theory.

The block-diagram symbol for an OR gate is shown in Fig. 1-2.7 along with
the table of combinations relating the inputs and output of the gate. Any such
gate is also called a module.

Figure 1-2.8 shows the block-diagram symbol for an AND gate as well as
its associated table of combinations.

The negation operator can be represented by the block diagram in Fig.
1-2.9.

The block diagrams not only replace switches and relays but can also be
used to represent ‘‘gates’’ in a more general sense. We may use p to denote volt-
age potential of an input which is “high' or “low’’ to allow a transistor to be in
a condueting or nonconducting state. It is therefore convenient to use these
modules and interpret the symbols according to the context. The number of
inputs to OR gates and AND gates can be extended to more than 2.

The above modules, or gates, can be interconnected to realize various
logical expressions, These systems of modules are known as logic or combinational
networks. Figure 1-2.10a shows a logic network with three inputs a, b, and ¢ and
an output expression (a + b)-c. Networks which form expressions (a-b) +

(@-b) and (a + b)-(@ + b) are given in Fig. 1-2.10b and ¢ respectively.

Input Output
P q rip + q)
q 1 ©]
o 1 1
0 0 0
FIGURE 1-2.7 An OR gate.
Input Output
P q rip - q)
- [
q 1 © 0
0 1 0
0 O 0
FIGURE 1-28 An AND gate.
Input Output
.P——| 20— r J: ﬂ'::l
0 1

FIGURE 1-2.9 A NOT gate.

1-2 coNNECTIVES 45

Pl —

:D—.[ﬂ*5}+{ﬁ'-b}

B
>

(b}

a2
b®n +b |
D—b{d+b]-{i+31
E—D)_.
a
b >_
b
()

FIGURE 1-2.10 Logic networks. (a) Logiec network for (a 4 b)-c. (b) Logic
network for a+b + &+b. (¢) Logic network for (a + b)+(d + b).

B
+
b

In the remainder of this sectic .. it is assumed that a variable and its nega-
tion are available without having to use an inverter. The mechanical relay was
an example of a device which supplied both. There are other basic transistor
devices which also supply both.

In order to simplify expressions by reducing the number of parentheses
used, we specify that - has precedence over 4-. For example, (a-b) + (¢-d) will
be written as a-b + c-d.

Consider the logical expression a-b + c¢-d, which consists of a disjunction
of two conjunctions. A logic network to realize this expression can be a two-level
network as shown in Fig. 1-2.11a. A two-level nefwork is one in which the longest
path through which information must pass from input to output is two gates.
A two-level network consisting of AND gates at the input stage followed by OR
gates at the cutput stage is sometimes called a sum-of-products (AND-to-OR)
nelwork.

Another possibility in a two-level network is to have OF gates at the input
stage followed by AND guates at the output of the network. Such a configuration

(a) (&)

FIGURE 1-2.11 Two-level networks. (a) AND-t0-OR logic network. (b)
OR-to-AN D logie network.

is shown for the expression {(a + b)-(c + d) in Fig. 1-2.11) and is called a
produci-of-sums (OR-to-AND) nelwork.

Other types of gates frequently used in computers are NOR gates and
NAND gates. Figure 1-2.12a represents a NOR gate and its associated table.
Figure 1-2.12b is an equivalent representation of a NOR gate consisting of an
OR gate followed by an inverter.

Figure 1-2.13a shows a NAND gate with its table, The other part of the
diagram is an equivalent NAND gate representation- consisting of an AND
gate followed by an inverter.

In Sec. 1-2.14 it was shown that each of the connectives NAND (T) and
NOR (]) is functionally complete; either can be used to obtain the AND, OR,
and NOT operations. The realizations of these operations in terms of NAND
gates and NOR gates only are given in Figs. 1-2.14 and 1-2.15 respectively. The

Input QOutput
a TR a ,b d S1a e
(a+b) =g | b @—‘D)—.a-b
et 1 0 . a+d
=a-bl 410 0
0]1 0
|0 1
{a) (b}

FIGURE 1-2.12 A NOR gate. (a) Block-diagram symbol and truth table
for a NOR gate. (b) Equivalent NOR gate network.

- T Y T

- g tb

-——g

(=T = ‘I’E
& &
-é
8
+
>l

DO == B

(@) (&)

FIGURE 1-2.13 A NAND gate. (a) Block-diagram symbol and truth table
for a NAND gate. (b) Equivalent NAND gate network.

1-2 CONNECTIVES 47

use of a single type of gate such as NAND or NOR is often preferred to a variety
of gate types because it is cheaper to produce and maintain just one type of gate.

One method used to produce a circuit containing only NAND or only NOR
gates is to replace the AND, OR, and NOT gates by NAND or NOR gates, ac-
cording to Figs. 1-2.14 and 1-2.15. This replacement often results in a circuit
which contains more NAND or NOR gates than necessary. There are other
techniques to generate equivalent circuits containing fewer NAND or NOR
gates. As an example, each of the circuits in Fig. 1-2.11, if substituted according
to Figs. 1-2.14 and 1-2.15, would require nine gates. But Fig. 1-2.16 contains
different realizations of the same expressions, using only three gates.

}a+b . D:._..,.b
>

FIGURE 1-2.14. NAND gate generation of 4, +, and — operations.

o~ - ™
B

a+h

- -

FIGURE 1-2.15. NOR gate generation of +, -, and — operations.

=D)

) o) e
) o

+d d

FIGURE 1-2.16. Two-level NAND and NOR gate networks.

48 MATHEMATICAL LOGIC

— So far we have discussed certain elements which correspond to some of the
connectives of statement logic. Normally, if a formula containing these connec-
tives is given, we can physically realize a circuit that corresponds to the formula
by replacing the connectives by the appropriate gates and the variables by cer-
tain physical quantities such as voltage, current, ete. This method may, however,
no¢ yield the best design from the point of view of using a minimum number of
gates, or the design it yields may not be a minimal design in some other sense.
Sometimes even the formula may not be available and all we may have is its
truth table. Even in this case, we may be required to physically realize the
formula, not in any manner, but in some minimal way. The design procedure in
both cases consists of the following steps:

1 Express the given information in terms of logical variables.

2 Get a formula for the required output in terms of the variables defined
in step 1, using the logical connectives.

3 Obtain a formula which is logically equivalent to the one formed in
step 2 and which will result in a least expensive (minimal) physical
realization.

4 Replace the logical connectives in the formula in step 3 by proper logie
blocks.

A discussion of step 3 is considered in some detail in Chap. 4. Steps 1 and 2 are
explained by means of an example.

EXAMPLE 1 A certain government installation has an intruder alarm system
which is to be operative only if a manual master switch situated at a security
cflice is in the closed position. If this master switch is on (i.e., closed), an alarm
will be sounded if a door to a restricted-access area within the installation is dis-
turbed, or if the main gates to the installation are opened without the security
officer first turning a special switch to the closed position. The restricted-access
area door is equipped with a sensing device that causes a switch to set off the
alarm if this door is disturbed in any way whenever the master switch is closed.
However, the main gates are opened during daytime hours to allow the public
to enter the installation grounds. Furthermore, at certain specified time intervals
during a 24-hour period, the master switch is turned off to allow the authorized
personnel to enter or leave the restricted-access area. During the period when the
main gates are open and the master switch is turned off, it is required that some
automatic recording instrument make an entry every time the door to the re-
stricted-access area is opened.

sOLUTION Step 1 Let us first designate each primary statement by a
variable. This assignment will permit us to consider the assignment of all possible
‘ruth values to the variables. Thus let

A : The alarm will be given.

M : The manual master switch is closed.

(7: The main gates to the installation are open.
R: The restricted-area door has been disturbed.
S: The special switch is closed.

E: The recording equipment 1s activated.

1-2 CONNECTIVES 49

Step 2 The output variables are A and E. The conditions given in the problem
require that

Ao M- (R+ (G-8)
EsM-G-R /111

EXERCISES 1-2.15

1 Construct a circuit diagram for a simple elevator control eircuit which operates as
follows. When a person pushes the button to summon the elevator to a floor, the ele-
vator responds to this request unless it is already answering a previous call to ancther
floor. In this latter case, the request is ignored. Assume that there are only three floors
in the building.

2 For the formula (P A Q)V (T |RA " |P), draw a corresponding circuit diagram
using (@) NOT, AND, and OR gates; (b) NAND gates only.

EXERCISES 1.2

! Show the equivalences (1) to (9) listed in Table 1-2.15 of Sec. 1-2.9.
2 Show the implications (1) to (12) listed in Table 1-2.17 of Sec. 1-2.11.
8 Show the following

HPT@e 1Pl (Pl PT IR
4 Write a formula which is equivalent to the formula
P A (Q=R)

and contains the connective NAND (T) only. Obtain an equivalent formula whicl
contains the connective NOR (|) only.

Show that P A" |PA Q= Rand R=PV |PV Q.

Show the equivalences (1) to (3) given in Sec. 1-2.14,

Show that the set {~ |, —} is functionally complete.

A connective denoted by - is defined by Table 1-2.21. Show that { |, =} is funec-
tionally complete,

Show the following equivalences.

(@) A— (PV C) & (A A JP)— C

) (P=C)A(Q—=C)=(PVQ)—C

() (QAA)—->COIN (A= (PVO))=(AN(P—Q)—C

(d) (PAQAA)=C)A (A (PVEV ()= (AN (P22Q))—C

(See Sec. 1-4.4 for application of these equivalences.)

0y =2 O O

o

Table 1-2.21

P Q P=Q
5 T T

T F T

F T F

F F T

5 MATHEMATICAL LOGIC

10 Obtain formulas having the simplest possible form which are equivalent to the for-

mulas given here.

() (PoQ2(1R—"1P))AR

(b)) PV (T1PV (@A 1Q))

(e) (PA@RASNVIPA QA S))

11 A chemieal plant produces sulfuric acid with a pH value in the range 2.5 to 3.0. There
is a main tank in which the acid is held while it is being diluted or heated {concen-
trated) to put it within this range. If an output valve which empties the tank is open,
no heating or diluting can take place because the current batch is being moved out
ol the tank for final storage. Dilution will occur when the pH is less than 2.5 (as long
as the tank is not full) and also whenever the level of the liquid remains below a speci-
fied level (the tank must be filled somehow after it has been emptied) . Heating will
taxe place when the pH is greater than 3.0 as long as the tank is not full. (A full tank
would spill over during the agitation caused by vigorous heating.)

Express the control circuit as block diagrams for both the heating control and the
dilution control.

1-3 NORMAL FORMS

Let A(Py, Ps, ..., P,) be a statement formula where Py, Ps, ..., P, are the
atomic variables. If we consider all possible assignments of the truth values to
Py, Py, ..., P, and obtain the resulting truth values of the formula A, then we
get the truth table for 4. Such a truth table contains 2* rows. The formula may
have the truth value T for all possible assignments of the truth values to the
variables Py, Ps, ..., P,. In this case, A is said to be identieally true, or a tau-
tology. If A has the truth value F for all possible assignments of the truth values
to Py, Py, ..., P, then A is said to be identically false, or a contradiction. Finally,
if A has the truth value 7 for at least one combination of truth values assigned
to Py, P, ..., P,, then A is said to be satisfiable.

The problem of determining, in a finite number of steps, whether a given
statement formula is a tautology or a contradiction or at least satisfiable is known
as a decistion problem. Obviously, the construction of truth tables involves a finite
number of steps, and, as such, a decision problem in the statement calculus
always has a solution. Similarly, decision problems can be posed for other logical
systems, particularly for the predicate ealculus. However, in the latter case, the
solution of the decision problem may not be simple.

As was mentioned earlier, the construction of truth tables may not be
practical, even with the aid of a computer. We therefore consider other pro-
cedures known as reduction to normal forms,

1-3.1 Disjunctive Normal Forms

It will be convenient to use the word “product’ in place of “conjunction” and
“sum’’ in place of “disjunction’ in our current discussion.

A product of the variables and their negations in a formula is called an
elemenlgry produet. Similarly, a sum of the variables and their negations is called

an elementary sum.
Let P and Q be any two atomic variables. Then P, 1P A Q, T1Q A P A

1-3 NORMAL FORMS 51

1P, P A 1P, and @ A " |P are some examples of elementary products. On the
otherhand, P, 1PV Q," 1RV PV T|P,PV T|P,and Q VvV "|P are examples
of elementary sums of the two variables. Any part of an elementary sum or
product which 1s itself an elementary sum or produet is called a faclor of the
original elementary sum or product. Thus 71Q, P A "|P, and 71Q A P are
some of the factors of 1@ A P A T |P. The following statements hold for ele-
mentary sums and products.

A necessary and sufhicient condition for an elementary product to be iden-
tically false is that it contain at least one pair of factors in which one is the
negation of the other.

A necessary and sufficient econdition for an elementary sum to be identically
true is that it contain at least one pair of factors in which one is the nega-
tion of the other.

We shall now prove the first of these two statements. The proof of the
second will follow along the same lines,

We know that for any variable P, P A TP is identically false. Henee if
P A TP appears in the elementary product, then the produet is identically
false. On the other hand, if an elementary product is identically false and does not
contain at least one factor of this type, then we can assign truth values T and F
to variables and negated variables, respectively, that appear in the product. This
assignment would mean that the elementary product has the truth value T'. But
that statement is contrary to our assumption. Hence the statement follows,

A formula which 1s equivalent to a given formula and which consists of
a sum of clementary products is called a disjunctive normal form of the given
formula.

We shall first discuss a procedure by which one can obtain a disjunctive
normal form of a given formula. It has already been shown that if the connectives
— and = appear in the given formula, then an equivalent formula can be ob-
tained in which “—" and “2"" are replaced by A, Vv, and 7]. This statement
would be true of any other connective yet undefined. The truth of this statement
will become apparent after our discussion of principal disjunctive normal forms.
Therefore, there is no loss of generality in assuming that the given formula con-
tains the connectives A, V, and | only.

If the negation is applied to the formula or to a part of the formula and
not to the variables appearing in it, then by using De Morgan’s laws an equiv-
alent formula can be obtained in which the negation is applied to the variables
only. After this step, the formula obtained may still fail to be in disjunetive nor-
mal form because there may be some parts of it which are produets of sums. By
repeated application of the distnbutive laws we obtain the required normal form.

EXAMPLE 1 Obtain disjunctive normal forms of (a) P A (P — Q}); (b)
PV = AQ).

SOLUTION

(@) PA(P=Q)eaPA(IPVQ e (PATIP)VIPAQ)
(b) " 1(PVQ)=2(PAQ)

SCIHPVAOARPAQ)V PV A KPAR))

MATHEMATICAL LOGIC

[usingR2Se(RAS)V(TIRATIS)]
S(CIPATIRAPAQ V{(PVQ APV Q)
S(CIPATIRAPAQ V((PVQ) ATTP)
V(PVE ATIQ
S(CIPAN RAPAQV(PATIP)V(QA TP
VIPATIQVQATIY
which is the required disjunective normal form. i

The disjunctive normal form of a given formula is not unique. In fact,
different disjunctive normal forms can be obtained for a given formula if the dis-
tributive laws are applied in different ways. Apart from this fact, the factors in
each elementary product, as well as the factors in the sum, can be commuted.
However, we shall not consider as distinct the various disjunctive normal forms
obtained by reordering the factors either in the elementary products or in the
sums.

Consider the formula F V (Q A R). Here the formula is already in the
disjunctive normal form. However, we may write

PV QAR)=(PVQQ AN (PV ER)=(PAPF)
VIPAQ V(IPAR)V (QAR)

the last equivalent formula being another equivalent disjunctive normal form.
Of course, different disjunctive normal forms of the same formula are equivalent.
In order to arrive at a unique normal form of a given formula, we introduce the
principal disjunctive normal form in See, 1-3.3,

Finally, we remark that a given formula is identically false if every ele-
mentary product appearing in its disjunctive normal form is identically false.
For the assumption to be true, every elementary produect would have to have
at least two factors, of which one is the negation of the other.

1-3.2 Conjunctive Normal Forms

A formula which is equivalent to a given formula and which consists of a product
of elementary sums is called a conjunctive normal form of the given formula,

The method for obtaining a conjunctive normal form of a given formula
18 similar to the one given for disjunctive normal forms and will be demonstrated
by examples, Again, the conjunctive normal form 1s not unmique. Furthermore,
a given formula 1s 1dentically true if everv elementary sum in its conjunetive
norma! form is identically true. This would be the ease if every elementary sum
appearing in the formula had at least two {setors, of which one 1s the negation
of the other.

EXAMPLE 1 Obtain a conjunctive normal form of each of the formulas given
in Exawple 1 of See. 1-3.1.

1-3 NORMAL FORMs 53

SOLUTION

(a) PA(P=Q)=PA (TIPVQ).Hence P A (TP V Q) isa required form.
b)) 1PV a2FPAQe(C1PVRA - (PAQ)AN(PAQ)
— (P VQ))
[using R2Se (R—-8) A (S—=R)]
S(PVQVPAQD)ANTHPAR)
vV (TP A IQ))

((PVQVP)APVRVQ)
A(TIPVY @ Vv (TP A TIY)

s (PVQVPIAPVQVY
ACIPVTIRQVTIP)ACIPY TIRY Q)

1117

EXAMPLE 2 Show that the formula @ V (P A T1Q) V (TIP A T1Q) is a
tautology.

sOLUTION First we obtain a conjunctive normal form of the given formula.

QVIPATIRV(IPATIR2QV (PV TIP) A1)
SVEYVY IP)ARQRYV Q)
=2 (Q@VPV TIP)AQYV TIQ)

Since each of the elementary sums is a tautology, the given formula is a tau-
tology. [1]

1-3.3 Principal Disjunctive Normal Forms

Let P and @ be two statement variables. Let us construct all possible formulas
which consist of conjunctions of P or its negation and conjunctions of @ or its
negation. None of the formulas should contain both a variable and its negation.
Furthermore, any formula which is obtained by commuting th~ formulas in the
econjunction is not included in the list because such a formula will be equivalent
to one included in the list. For example, either P A Q or @ A P is included, but
not both. For two variables P and @, there are 22 such formulas given by

PAQ PATIQ TIFAQ and TIPATIQ

These formulas are called minterms or Boolean conjunctions of P and ¢}. From
the truth tables of these minterms, it is clear that no two minterms are equiv-
alent. Each minterm has the truth value T for exactly one combination of the
truth values of the variables P and Q. This fact is shown in Table 1-3.1.

We assert that if the truth table of any formula containing only the vari-
ables P and @ is known, then one can easily obtain an equivalent formula which
consists of a disjunction of some of the minterms. This statement is demonstrated
as follows.

For every truth value T in the truth table of the given formula, select the

54 MATHEMATICAL LOGIC

Table 1-3.1

Q PAQ PA 710 TPAQ APA TI1Q
T T T F F F

T F F T F F

F T F F T F

F F F F F T

minterm which also has the valve T for the same combination of the truth values
of P and @. The disjunction of these minterms will then be equivalent to the
given formula.

This discussion provides the basis for a proof that a formula containing
any connective is equivalent to a formula containing A, V, and 7.

For a given formula, an equivalent formula consisting of disjunctions of
minterms only is known as its principal digjunctive normal form. Such a normal
form 1s also called the sum-of-products canonical form.

EXAMPLE 1 The truth tables for P — @, P V @, and 71(P A Q) are given
in Table 1-3.2. Obtain the principal disjunctive normal forms of these formulas.

SOLUTION

PoQa (PAQ V(TIPAQ V (TIPATIQ)
PVQe(PAQ V(PATIOV(IIPAQ
TMPAQ S (PATIQQVIIPAQ V (TIPATIQ) /{17

Note that the number of minterms appearing in the normal form is the
same as the number of entries with the truth value 7' in the truth table of the
given formula. Thus every formula which is not a contradiction has an equiv-
alent principal disjunctive normal form. Further, such a normal form is unique,
except for the rearrangements of the factors in the disjunctions as well as in each
of the minterms. One can get a unique normal form by imposing a certain order
in which the variables appear in the minterms as well as a definite order in which
the minterms appear in the disjunction. In that case, if two given formulas are
equivalent, then both of them must have identical principal disjunctive normal
forms. Therefore, if we can devise a method other than the construction of truth
tables to obtain the principal disjunctive normal form of a given formula, then

Table 1-3.2

Q P—Q PVQ HPA Q)

MY
e R B B |
e B Be B
R B B
e R B B

1-3 NORMAL FORMS 53

the same method can be used to determine whether two given formulas are
equivalent, ,

Although our discussicn of the prineipal disjunctive normal form was re-
stricted to formulas containing only two variables, it is possible to define the
minterms for three or more variables. Minterms for the three vanables P, @,
and R are

PAQAR PAQATIR PATIQAR PATIQA IR
TIPAQAR TIPAQATIR P ATIQAR IPATIQATIR

These ininterms satisfy properties similar to those given for two variables. An
equivalent principal disjunctive normal form of any formula which depends upon
the variables P, Q, and R can be obtained. Note that there are 2 minterms for
three variables or, more generally, 2* minterms for n variables. For any formula
containing n variables which are denoted by P, Ps, ..., P., an equivalent dis-
junctive normal form can be obtained by selecting appropriate minterms out of
the set of 2» possible minterms.

If a formula is a tautology, then obviously all the minterms appear in its
principal disjunctive normal form; it is also possible to determine whether a
given formula is a tautology by obtaining its principal disjunctive normal form.

In order to obtain the principal disjunctive normal form of a given formula
without constructing its truth table, one may first replace the conditionals and
biconditionals by their equivalent formulas containing only A, V, and "]. Next,
the negations are applied to the variables by using De Morgan’s laws followed
by the application of distributive laws, as was done earlier in obtaining the dis-
junctive or conjunctive normal forms. Any elementary product which is a con-
tradiction is dropped. Minterms are obtained in the disjunctions by introducing
the missing factors. Identical minterms appearing in the disjunctions are de-
leted. This procedure is demonstrated by means of examples.

EXAMPLE 2 Obtain the principal disjunctive normal forms of (a) 1P V §;
B PAQ V(IPAR)V (QAR).

SOLUTION
(@) 1PV (TIPA@QRY TIQ)) VQA PV IP))
(AANTe=A)
SCIPAQVIPATIRV@AP)V(QATIP)
(distributive laws)

S(CIPAQ VUIPATIR) V(PAQ

(commutative law and P vV P & P)
(See Example 1.)

(b) (PAQ)V (TIPAR)V (@ AR)
SPAQARYVY IR VIIPARA (QVTIQ)
VIQARAN PV IP))
SPAQAR)V(PAQATIR)V(IPAQAR)
V(TIPATIQRAR) /117

56 MATHEMATICAL LOGIC

EXAMPLE 3 Show that the following are equivalent formulas.
(a) PV(PAQ) =P
) PVv(TIPAQ =PVQ

soLuTION We write the principal disjunctive normal form of each formula
and compare these normal forms,

(@) PV(PAQSFPAQRQVTINVEPAQDePAQDYVIPATIQ
PeaPA@Q@V 1= (PAQ V (PATIQ)
) PVUIPAQ & (PA@QY 1)V (IPAQ)
SPAQVIEPA R VIOIPAQ
PvQe(PAQV) VRAEYV IP))
SPAQVEATIRVOIPAQ /117

EXAMPLE 4 Obtain the principal disjunctive normal form of
P—=((P=Q) A TRV 1P))

soLuTION Using P —Q & |P V Q and De Morgan’s law, we obtain

Po>((P-oQ)A IR YV TIP))
= PVTIPVRAQRAP)
@ PVIIPARAP)VQ@AQAPLP)
=PV (Q A P)
(1IPARY Q) V(IQAP)
S(CIWPAQVIPATIQ V((PAQ /1Y

The procedure described above becomes tedious if the given formula is
complicated and contains more than two or three varnables. When the number
of variables is large, even a comparison of two prineipal disjunctive normal forms
becomes cumbersome. In Sec. 1-3.5, we describe an ordering procedure for the
variables and a notation which make such a comparison easy. We also discuss In
Chap. 2 a computer program to obtain the sum-of-products canonical form for
a given formula.

1-3.4 Principal Conjunctive Normal Forms

In order to define the principal conjunctive normal form, we first define formulas
which are called maxterms. For a given number of variables, the mazterm con-
sists of disjunctions in which each variable or its negation, but not both, appears
only once. Thus the maxterms are the duals of minterms. Either from the duality
principle or directly from the truth tables, it can be ascertained that each of the
maxterms has the truth value F for exactly one combination of the truth values
of the variables. Also different maxterms have the truth value F for different
combinations of the truth values of the variables,

For a given formula, an equivalent formula consisting of conjunctions of
the maxterms only is known as its principal conjunctive normal form. This normal

1-3 NORMAL FORMS 57

form is also called the product-of-sums canonical form. Every formula which is
not a tautology has an equivalent principal conjunctive normal form which is
unique except for the rearrangement of the factors in the maxterms as well as
in their conjunctions. The method for obtaining the prineipal conjunctive normal
form for a given formula 1s similar to the one deseribed previously for the prin-
cipal disjunctive normal form. In fact, all the assertions made for the principal
disjunctive normal forms can also be made for the principal conjunctive normal
forms by the duality prineiple.

If the principal disjunctive (conjunctive) normal form of a given formula
A containing n variables is known, then the prineipal disjunctive (conjunctive)
normal form of ~ 1A will consist of the disjunction (eonjunction) of the remain-
ing minterms (maxterms) which do not appear in the prineipal disjunetive (con-
junctive) normal form of A. From A < 71]A one can obtain the principal con-
junctive {disjunctive) normal form of A by repeated applications of De Morgan’s
laws to the principal disjunctive (conjunctive) normal form of 714, This pro-
cedure will be illustrated by an example.

In order to determine whether two given formulas A and B are equivalent,
one can obtain any of the principal normal forms of the two formulas and com-
pare them. It is not necessary to assume that both formulas have the same vari-

ables. In fact, each formula can be assumed to depend upon all the variables that
appear in both formulas, by introducing the missing variables and then reducing
them to their principal normal forms.

EXAMPLE 1 Obtain the principal conjunctive normal form of the formula
Sgivenby (T|P—=R) A (Q=P).

SOLUTION

(IP—=R)A(Qa=F)
S(PVR)A((Q-P)A(P—Q))
SPVRACIRVP)A(TIPVQ)
S(PVEVQ@QATIQ)ACTIRQVPYV (RATIR))
ACIPVQV (RATIR))
S(PVQVR A PY I QVRERAPY TIQV TIR)
ACIPVQVR A(IPVQYV TIR)
Now the conjunctive normal form of 7S can easily be obtained by writing

the conjunction of the remaining maxterms; thus, 715 has the principal con-
junctive normal form

(PVQVTIR)A(IPVTIRVE)A(TIPV IRV TIR)
By considering ~]” 1S, we obtain
Pvev IRV ICIPVYVTIRVE)V TI(CIPVY IRV TIR)
S(IPATIRARNV(PAQATIRYV(PAQAR)
which is the principal disjunctive normal form of S. /1]

58 MATHEMATICAL LOGIC

EXAMPLE 2 The truth table for a formula A is given in Table 1-3.3. De-
termine its disjunctive and conjunctive normal forms.

SoLUTION By choosing the minterms corresponding to each T value of 4,
we obtain

A (PATIRARVITIPAQARV(TIPAQAN TIR)
VITIPATIRQATIR)
Similarly

A= (IPVTIRVTIR)A(CIPVY TIRVE)A(TIPV @V R)
A(PVQYV TIR)

Here the maxterms appearing in the normal form correspond to the F values
of A. The maxterms are written down by including the variable if its truth value
is F and its negation if the value is 7. 111/

1-3.5 Ordering and Uniqueness of Normal Forms

Given any n statement variables, let us first Mrafrlge them in some fixed order.
If capital letters are used to denote the variables, then they may be arranged
in alphabetical order, If subscripted letters are also used, then the following is
an illustration of the order that may be used:

AB,....,Z, A,B,, ..., 2, Ay, By, ...

As an example, if the variables are P;, @, K;, S;, Ts, and @, then they may be
arranged as
Ql- Plr Slr T‘h Q-Ij RI

Once the variables have been arranged in a particular order, it is possible to
designate them as the first variable, second variable, and so on.

Let us assume that n variables are given and are arranged in a particular
order. The 2" minterms corresponding to the n variables can be designated by
Mo, My, ..., Me™L, If we write the subseript of any particular minterm in binary
and add an appropriate number of zeros on the left (if necessary) so that the
number of digits in the subscript is exactly n, then we can obtain the correspond-
ing minterm in the following manner. If in the i¢th location from the left there

:
E

bl B B B B B B B
ol B - T e B B B
Sl e B - B e I - -
- BB e B - The T (-

1-3 NORMAL FORMS 59

ippears 1, then the ith variable appears in the conjunction. If 0 appears in the
ith location from the left, then the negation of the ith variable appears in the
conjunction forming the minterm. Thus each of my, my, ..., me»! corresponds
to a unique minterm, which can be determined from the binary representation
of the subscript. Conversely, given any minterm, one can find which of m,,

m, ..., me*t designates it.
Let P, @, and R be three variables arranged in that order. The correspond-
ing minterms are denoted by mq, my, ..., m;. We can write the subseript 5 in

binary as 101, and the minterm m; is P A ~|1Q A R. Similarly m, corresponds
to [P A TIQ A T 1E. To obtain the minterm m;, we write 3 as 11 and append
a zero on the left to get 011, and m;is "|P A @ A R.

If we have six variables Py, P, ..., P;, then there are 2¢ = 64 minterms de-
noted by my, my, ..., mg. To get & minterm, mgs say, we write 38 in binary as
lﬂﬂll{}; thﬂn thE miﬂtnET'ﬂ'l M35 T Pl A ‘_lpg A —IP; AN Pq AY P; AN —!Pq.

Having developed a notation for the representation of the minterms, which
can be further simplified by writing only the subscripts of mo, m, ..., ma~?, we
designate the disjunction (sum) of minterms by the compact notation 2. Using
such a notation, the sum-of-products canonical form representing the disjunction
of m;, m;, and m, can be written down as 2| 7,7,k. As an example, it 1s known that

(PAQ V(IIPAR)V(QAR)= (IPA 1QAR)
VIIPAQRARYVIPAQA IR)V(PAQAR)

Thus we denote the principal disjunctive normal form of
(PAQ)V (TIPAR)V (QAR)

as 3 1,3,6,7. With this type of representation and simplification of notation,
it 1s easy to compare two principal disjunctive normal forms.

We now proceed to obtain a similar representation for the product-of-sums
(principal conjunctive normal) forms. We denote the maxterms of n variables
by Mo, M4,...,M2»—1. Again, the maxterm corresponding to M, say, is obtained
by writing j in binary and appending the required number of zeros to the left
in order to get n digits. If 0 appears in the 4th location from the left of this binary
number, then the ith variable appears in the disjunction, while if 1 appears in
the ith location, then the negation of the ith variable appears. Thus the binary
representation of the subseript uniquely determines the maxterm, and, con-
versely, every binary representation of numbers between 0 and 2* — 1 determines
a maxterm. Note that the convention regarding 1 and 0 here is the opposite of
what was used for minterms. This convention is adopted with a view to connect
the two principal normal forms of any given formula.

The maxterms, M,, M,, ..., M;, corresponding to three variables P, @,
and R, are

PVQVR PvQv IR PV QVR PvTiQvV IR
"1PVRVRER 1Pvev iR PV IRV E 1PVTIQV IR

As before, further simplification is introduced by using] to denote the
conjunction (product) of maxterms. Thus [J 4,7,k represents the conjunction of
maxterms M,, M;, M,..

60 MATHEMATICAL LOGIC

To illustrate this discussion, we consider (P A Q) V (T1P A R). We ob-
tain its principal conjunctive normal form as follows.

(PAQ)V (TIPAR)

S((PAQVTIP)APAQ) VER)

S(PVTIP)AQV TP A(PVRIA(QVR)

SQVTIPV(RATIR) A(PVEREV (QATIQ))
A@QVRYV (PATIP))

SQVTIPVRIAQVTIPYVTIRIA(PVRVQ)
APVREVTIQQAQVEVP)AQVRYVTIP)

S (TIPVOAVREIACIPVQVY TIRDA(PVQVE)
APVTIQVR)

Thus the product-of-sums canonical form of (P A Q) V (TP A R) can be
represented as JJ 0,2,4,5. Note that its disjunctive normal form is

(PAQAR)V(PAQA IRV IPAQAR)
V{ITIPATIQ AR) e 2 1,3,6,7

More generally, given any formula containing n variables and using the
above notations to represent the equivalent principal disjunctive and conjunc-
tive normal forms, we see clearly that all numbers lying between 0 and 2 — 1
which do not appear in one normal form will appear in the other. This state-
ment follows from the principle of duality and the discussion given earlier re-
garding the relation between these two principal normal forms.

EXERCISES 1-3.5

1 Write equivalent forms for the following formulas in which negations are applied to
the variables only.
(¢) 1(PVQ) (d) HP=Q)
® APAQ (o) TIPT Q)
(e) "UP—Q) ()P Q)
Obtain the prineipal conjunctive normal forms of (a), (¢), and (d).
2 Obtain the product-of-sums canonical forms of the following formulas.
() (PAQARYV(IPARAQV (TIPATIRA TIR)
® CISATIPARAQV (BAPATIRATIOV(ISAPARA TRV
QA TTPATIRAS)V(PAISA IRAQ)
() (PAQV(IPAQV(PATIQ)
(@) (PAQV (TIPAQAR)
3 Obtain the principal disjunctive and conjunctive normal forms of the following for-
mulas.
(@ C1PVTIQ)— (P71Q) (d) (P=QARDA(CIP-(CIRATIR)
®) QA (PVTIQ) () P—(PA (Q— P))
() PV(IP=QV(1IR—R)) () @—=P)A(IPARQ)
Which of the above formulas are tautologies?

1-3 wNorMmAL FORMS 61

1-3.6 Completely Parenthesized Infix Notation and Polish Notation

In this section we discuss the problem of translating a given logical expression
or a statement formula into some target language such as machine language or
assembly language. Also, from a given statement formula we wish to determine
mechanically its truth value for various assignments of truth values to its vari-
ables. In order to do such an evaluation, 1t i1s first necessary for us to examine
our notations, symbols, and rules for writing a well-formed formula.

In writing a statement formula, parentheses have been used whenever
necessary. In fact, our definition of well-formed formulas as given in See. 1-2.7
imposes upon us the condition that a certain number of parentheses must be
used. In order that the number of parentheses not become excessively large, we
developed certain conventions. The first such convention developed and incorpo-
rated in the definition of the well-formed formula stated that if 4 is a well-formed
formula, then ~ |4 is a well-formed formula. No parentheses were used with A.
This means — | has the highest precedence and applies to any well-formed formula
following it. In this way, ~|P V @ 1s understood to mean (" |P) V @, not
PV Q). Also T|(P v @) A Rstands for (T (P V @) A R). The next con-
vention suggested was that the outermost parentheses of an expression be
dropped, so that (P A @) V R was taken to be a well-formed formula instead
of ((P A Q) V R) as required by the original definition. Nested parentheses
have also been used. It is understood that the proper subexpression to be con-
sidered first is obtained by scanning from left to right up to the first right paren-
thesis encountered and then scanning left until a left parenthesis is detected. If
an evaluation of such an expression is to be done mechanieally, the number of
parentheses should be reduced by adopting certain conventions so that an ex-
cessive number of scannings of the expression 1s avoided.

One method of reducing the number of parentheses further is to preseribe
an order of precedence for the connectives. Once this order iz prescribed, further
reductions can be made by requiring that for any two binary connectives ap-
pearing in a formula which have the same precedence, the left one is evaluated
first. The same requirement can be stated by saying that the binary connectives
are lefl-associative, while | is right-associative. Such a convention is commonly
used in arithmetic; for example, 4 4+ 6 X 3 — 7 standsfor [¢ + (6 X 3)] — 7.

Tet us restrict ourselves to formulas containing the connectives ~|, A,
and V and assume this order of precedence: 7], then A, and then V. First we
consider an expression which does not contain any parentheses, such as

PVQARVSAT
R S

1 2

Accurding to our convention, the above expression stands for (P vV (@ A R))
(S A T). For the evaluation of this expression we must scan from left to right
repeatedly. The numbers below the subexpressions indicate the steps of such an

62 MATHEMATICAL LOGIC

evaluation. This process of evaluation is inefficient because of the repeated scan-
ning that must be done.

If there are parentheses in an expression, then the order of precedence is
altered by the parentheses. For example, in (P V @) A B we evaluate first
P v Q and then (P v Q) A R. In faet, it is possible to write expressions which
make the order of evaluation of subexpressions independent of the precedence
of the connectives, This task is accomplished by parenthesizing subexpressions
in such a way that corresponding to each connective there is a pair of parentheses.
This pair encloses the operator (connective) and its operands. We now define
the parenthetical level of an operator as the total number of pairs of parentheses
that surround it. A pair of parentheses has the same parenthetical level as that
of the operator to which it corresponds, i.e., of the operator which is immediately
enclosed by this pair. Such an expression is called a fully parenthesized expression.
For example, in the fully parenthesized expression

(PV ((QAR) A (T]8)))
1 3 2 3

the integers below the operators specify the parenthetical level of each operator,
When such an expression is evaluated, the subexpression containing the operator
with the highest parenthetical level is evaluated first. In the case where more
than one operator has the highest parenthetical level (as in the above example),
we evaluate them one after the other from left to right. Once the subexpressions
containing operators at the highest parenthetical level have been evaluated,
the subexpressions containing the operators at the next highest level are evalu-
ated in the same way. Thus, in the above example the subexpressions are evalu-
ated in the following order

@AR) (T18) (Q@AR)A(IS)) (PVH{QAR)AI(IS)))

As mentioned earlier, for a fully parenthesized expression no convention regard-
ing the order of precedence of an operator is needed.

In the one case when the order of precedence of the operators is prescribed
and the expressions are partly parenthesized, or in the other case when the ex-
pressions are fully parenthesized, a repeated scanning from left to right is still
needed in order to evaluate an expression. The reason is that the operators appear
along with the operands inside the expression. The notation used so far was to
write the operator (at least the binary) between the operands, for example,
P A Q. Such a notation is called an infiz notation. Repeated scanning is avoided
if the infix expression is converted first to an equivalent parenthesis-free suffix or
prefiz expression in which the subexpressions have the form

operand operand operator
or operator operand operand
in place of an infix form where we have

operand operator operand

This type of notation is known as fukastewiczian notation (due to the Polish
logician Jan Zukasiewicz) or “‘reverse Polish” or “Polish’ notation. For example,
the expressions given in each row of Table 1-3.4 are equivalent.

1-3 NORMAL FORME 63

Table 1-3 4
Infix Suffix Prefix
A A A
AVB ABV VAB
AVBVC ABVCV VVABC

T AVEBVD ABCVV VAVBC -
AVBAC ABCA V VAA BC
AA (BVO) ABC VA AAVBC
AABAC ABACA ANABC
AA 1B ABTA AATB

AN BV IO ABCTIVA AAVBTIC

Note that in both the suffix and prefix equivalents of an infix expression the
variables are in the same relative position. The only differences are that the ex-
pressions 1n suffix or prefix form are parenthesis-free and that the operators are
rearranged according to the rules of precedence for the operators and to the over-
ruling of the precedence rules by the use of parentheses.

A fully parenthesized infix expression can be directly translated to prefix
notation by beginning with the conversion of the inner parenthesized subexpres-
sion and then proceeding toward the outside of the expression. In the case of the
fully parenthesized expression

(AV ((BAC) AD))
1 3 2

the innermost parenthesized subexpression of level 3 is

(B A C)

and it is converted to A BC. This prefix subexpression becomes the first operand
of the operator A at level 2. Therefore the subexpression ABCA D of level 2
is converted to the prefix equivalent of A A BCD, and finally at level 1 the term
AV A ABCD is converted to the final prefix form of VA A ABCD.
Programmers, of course, do not program expressions in fully parenthesized
form. Certain FORTRAN and other compilers initially convert partially paren-
thesized expressions to a fully parenthesized form before conversion to a suffix
form is performed. (Suffix form seems to be more convenient for some compilers,)
Let us consider the problem of mechanically converting a parenthesis-free
expression (containing V, A, and ") into prefix form. As was mentioned pre-
viously, only the operators are rearranged in order to obtain the prefix Polish
equivalent. In scanning right to left, the rightmost operator having the highest
precedence will be the first operator to be encountered in the prefix string. The
next highest precedence operator will be the second operator to be encountered
in the expression. Note that for infix expressions if we do not specify that a left-
most (or rightmost in the case of the negation operator) operator has prece-
dence over other operators of equal precedence, then the prefix equivalent 1s
not unique. For example, the expression A V B V C would be converted to
VAV BC or VVABC if no mention was made that the leftmost operator V 1n
the infix string has precedence over the remaining operator. From this fact it is

64 MATHEMATICAL LOGIC

clear that when we scan a prefix expression from right to left, we encounter the
operators in the same order in which we would have evaluated them by follow-
ing the precedence convention for operators in the infix expression. For example,
the prefix equivalent of A v B A C, VA ABC, where the operator A 1s en-
countered before V in a right-to-left scan, indicates that the conjunction is to
be evaluated before the disjunction.

In practice it is often necessary to evaluate expressions, i.e., to determine
their truth value for a given set of truth values assigned to their variables. This
evaluation can be done more easily by using a prefix (suffix) representation of the
expression, because scanning of the expression is required in only one direction,
viz., from right to left (left to right) and only once, whereas for the infix expres-
sion the scanning has to be done several times and in both directions. For ex-
ample, to evaluate the prefix expression V A A BC, we scan this string from right
to left until we encounter A. The two operands, viz., B and C, which appear
immediately to the right of this operator are its operands, and the expression
A BC is replaced by its truth value. Let us assume that this value is denoted by
T.. Note that T, is either 7' or F. This fact reduces the original prefix string to
V AT;. Continuing the scanning beyond T, the next operator we encounter is
V whose operands are A and T, and the evaluation results in a value which we
will denote by T..

This method of evaluating prefix expressions can be summarized by the
following four rules which are repeatedly applied until all operators have been
processed.

! Find the rightmost operator in the expression.

2 Select the two operands immediately to the right of the operator found.
3 Perform the indicated operation.

4 Replace the operator and operands with the result.

As a further example, the prefix expression V 4 A A BCD which corresponds
to the infix expression A V (B A C) A D isevaluated here for valuesof A = F,
B=T,C=T,and D =T.

Prefiz form Current operator Curreni operands Compuled value
VAAABCD A B, C TW=T
VAAT\D A T, D Te=T

VAT, vV A, Ty Ty =T

Ty o el

We will return to this topic in Sec. 3-4.

Note that the preceding discussion applies equally well to suffix expres-
sions. All that is needed is to change prefix to suffix, left to right, and right to
left.

EXERCISES 1-3.6

1 Write the following formulas in prefix and suffix form. The following precedence is
assumed: 22, —, V/, A, | (T | having the highest precedence).

1-4 THE THEORY OF INFERENCE FOR BTATEMENT CALCULUS 65

(¢) PQV RV S
() QA " I(R=2PV Q)
(¢) PA |R=2Qa2PAQ

(@ "TIPVQARVTIQ
2 Convert the following prefix and suffix formulas into completely parenthesized form.

Also write them in an infix form, using the above order of precedence to minimize the
number of parentheses.

(a) =T IPVQ2RT]S

(b) =»—PQ——QR—PR

(¢) P~ |P—»P—P—

(d) PQ—RQ—APRVAQ—

1-4 THE THEORY OF INFERENCE FOR STATEMENT CALCULUS

The main function of logic is to provide rules of inference, or prineiples of reason-
ing. The theory associated with such rules is known as inference theory because
it is concerned with the inferring of a conclusion from certain premises. When
a conclusion is derived from a set of premises by using the accepted rules of
reasoning, then such a process of derivation is called a deduction or a formal proof.
In a formal proof, every rule of inference that is used at any stage in the deriva-
tion is acknowledged. In mathematical literature, the proofs given are generally
informal in the sense that many steps in the derivation are either omitted or
considered to be understood.

An important difference between the reasoning used in any general discus-
sion and that used in mathematics is that the premises used are believed to be
true either from experience or from faith, and if proper rules are followed, then
one expects the conelusion to be true. In mathematics, one is solely concerned
with the conclusion which is obtained by following the rules of logic. This con-
clusion, called a theorem, ecan be inferred from a set of premises, called the axioms
of the theory. The truth value plays no part in the theory.

Now we come to the questions of what we mean by the rules and theory of
inference. The rules of inference are criteria for determining the validity of an
argument. These rules are stated in terms of the forms of the statements (premises
and conclusions) involved rather than in terms of the actual statements or their
truth values. Therefore, the rules will be given In terms of statement formulas
rather than in terms of any specific statements. These rules are not arbitrary
in the sense that they allow us to indicate as valid at least those arguments which
we would normally expect to be valid. In addition, neither do they characterize
as valid those arguments which we would normally consider as invalid.

In any argument, a conclusion is admitted to be true provided that the
premises_{assumptions, axioms, hypotheses) are accepted as true and the reason-
ing used in deriving the conclusion from the premises follows certain accepted
rules of logical inference. Such an argument 18 called sound. In any argument,
we are always concerned with its soundness. In logic the situation is slightly dif-
ferent, and we concentrate our attention on the study of the rules of inference
by which conclusions are derived from premises. Any conclusion which is arrived
at by following these rules is called a valid conclusion, and the argument is called
a valid argument, The actual truth values of the premises do not play any part

66 MATHEMATICAL LOGIC

in the determination of the validity of the argument. In short, in logic we are
concerned with the validity but not-necessarily with the soundness of an argu-
ment,

1-4.1 Validity Using Truth Tables

Let A and B be two statement formulas. We say that “B logically follows from
A” or “B 18 a valid conclusion (conseguence) of the premise A” iff A - B is a
tautology, that is, 4 = B.

Just as the definition of implication was extended to include a set of for-
mulas rather than a single formula, we say that from a set of premises {H,,
H,, ..., Ha} a conclusion C follows logically 1ff

HANHA - ANHa=C (1)

Given a set of premises and a conclusion, it is possible to determine whether
the conclusion logically follows (we shall simply say ““follows’) from the given
premises by constructing truth tables as follows.

Let Py, P,, ..., P, be all the atomic variables appearing in the premises
H,, H,, ..., Hxand the conclusion C. If all possible combinations of truth values
are assigned to Py, Ps, ..., P. and if the truth values of H,, Hy, ..., Hn and C
are entered in a table, then it is easy to see from such a table whether (1) is true.
We look for the rows in which all Hy, H,, ..., Hx have the value T. If, for every
such row, (' also has the value T, then (1) hnlds. Alternatively, we may look
for the rows in which € has the value F. If, in every such row, at least one of the
values of H;, Hs, ..., Hn 18 F, then (1) also holds. We call such a method a
“truth table technique’ for the determination of the validity of a conclusion
and demonstrate this technique by examples.

EXAMPLE 1 Determine whether the conclusion C follows logically from the
premises H; and H..

(a) Hi: P—-Q Hy: P C:Q

by Hi: P—-Q H.: 1P C:Q

(¢) H: P—=Q H,: |[(PAQ) C:7|P
(d) Hy: 1P Hy: P=2Q C: (P AQ)
(e) H;: P—=Q H,:Q C:P

sOLUTION We first construct the appropnate truth table, as shown in
Table 1.4.1. For (a) we observe that the first row is the only row in which both

Table 1-4.1

p.u

Q P—Q s 1Q WPA Q) PEQ

ST
SRR
NS
Rk
e B e
LR
N TN

14 THE THEORY OF INFERENCE FOR BTATEMENT CALCULUS 67

the premises have the value T. The conclusion also has the value T in that row.
Hence it is valid. In (b) observe the third and fourth rows. The conclusion @Q is
true only in the third row, but not in the fourth, and hence the conclusion is not
valid. Similarly, we can show that the conclusions are valid in (¢) and (d) but
not in (e).

The conclusion P in (¢) does not follow logically from the premises P — @
and @, no matter which statements in English are translated as P and Q or what
the truth value of the conclusion P may be. As a particular case, consider the

argument

H;: If Canada is a country, then New York is a city.: (P — Q)
Hg: New York is a city.: (@)
Conclusion C: Canada is a country.: (P)

Note that both the premises and the conclusion have the truth value 7. How-
ever, the conclusion does not follow logically from the premises. This example is

chosen to emphasize the fact that we are not so much concerned with the con-
clusion’s being true or false as we are with determining whether the conclusion

follows from the premises, 1.e., whether the argument is valid or invalid. il

Theoretically, it is possible to determine in a finite number of steps whether
a conclusion follows from a given set of premises by constructing the appropnate
truth table. However, this method becomes tedious when the number of atomic
variables present in all the formulas representing the premises and conclusion is
large. This disadvantage, coupled with the fact that the inference theory is ap-
plicable in more general situations where the truth table technique is no longer
avallable, suggests that we should investigate other possible methods. This in-
vestigating will be done in the following sections.

EERCISEB 1""‘11

1 Show that the conclusion C follows from the premises H,, Hs, . .. in the following cases.

(a) Hi: P—Q C:P— (P A Q)
(b) H:"1PVQ H: 1(QATIR) Hy: IR C:T|P

(¢) Hy,:"|P Hs: PV Q C:Q

(d) Hi: 1@ Hy: P—Q c:"1P

(e) H: P—Q H;:Q— R C:P—R

{f} HﬂR H:PV_lP C:R

2 Determine whether the conclusion C is valid in the following, when H;, Hy, ... are
the premises.

(a) H: P—@Q Hy: 1Q C: P
(b) Hi: PV Q Hy:P—R Hy:Q—R C:R
(¢) H: P> (Q—R) Hi:PAQ C:R
(d) H: P—(Q—R) H:: R C: P
(e) Hi:"|P Hy: PV Q C:PAQ

8 Without constructing a truth table, show that A A FE is not a valid consequence of
_ Az2B B2 (CA D) C2(AV E) AV E
'Also show that A \/ C is not a valid consequence of
Aa2(B—C) B2(1AVI]0) ca2(AVIB) B

68 MATHEMATICAL LOGIC

4 Show that LV M follows from
PAQAR (Q2 R)— (LV M)

& Show without constructing truth tables that the following statements cannot all be
true simultaneously.
(a) P2Q Q—R TRV 8 “1P— 8 —18
() RV M 1RV S M 18

1-4.2 Rules of Inference

We now describe the process of derivation by which one demonstrates that a par-
ticular formula is a valid consequence of a given set of premises. Before we do
this, we give two rules of inference which are called rules P and T.

Rule P: A premise may be introduced at any point in the derivation.
Rule T: A formula S may be introduced in a derivation if S is tautologically
implied by any one or more of the preceding formulas in the derivation.

Before we proceed with the actual process of derivation, we list some im-
portant implications and equivalences that will be referred to frequently.

Not all the implications and equivalences listed in Tables 1-4.2 and 1-4.3
respectively are independent of one another. One could start with only a mini-
mum number of them and derive the others by using the above rules of inference.
Such an axiomatic approach will not be followed. We list here most of the im-
portant implications and equivalences and show how some of them are used in
a derivation. Those which are used more often than the others are given special
names because of their importance.

EXAMPLE 1 Demonstrate that B 18 a valid inference from the premises
P—-Q,Q—R and P.

SOLUTION
{1} (1) P—@Q RuleP
{2] (2) P Rule P
{1, 2} 3) @ Rule T, (1), (2), and I;; (modus ponens)
{4} (4) @Q@—R RuleP
(1,2,4) (5 R Rule T, (3), (4), and I

The second column of numbers designates the formula as well as the line of der-
ivation in which it occurs. The set of numbers in braces (the first column) for
each line shows the premises on which the formula in the line depends. On the
right, P or T represents the rule of inference, followed by a comment showing
from which formulas and tautology that particular formula has been obtained.
For example, if we follow this notation, the third line shows that the formula in
this line is numbered (3) and has been obtained from premises in (1) and (2).
The comment on the right says that the formula @ has been introduced using
rule T and also indicates the details of the application of rule T. Yt

14 THE THEORY OF INFERENCE FOR ETATEMENT CcALCULUS 69

Table 1-4.2 TMPLICATIONS

I PA Q=P

1, PA Q=50 (simplification)
I P=P \Q -
I Q=P VQ iacssion)

Is \P=P —Q

Is Q=P —¢Q

Iy WP — Q) =P
Is WP —Q)="1Q
Iy PQ=PAQ

Iha P, P WV Q=@ (disjunctive syllogiam)
In P,P—Q=4¢ (modus ponens)
s TQ,P—Q="P (modus tollens)
In P—QQ—+R=P—R (hypothetical syllogism)
In PVQP—-RQ-R=R (dilemma)
Table 1-4.3 EQUIVALENCES
E, TP & P (double negation)
E, PANQeQANFP .
E, PVQeQ VP (commutsative laws)
E, (PANQAReSPA QA R) e
Es (PVQ VRePV@QVE \Hoesative. nm)
Ky PAQQVRERI=2(PAQVIIPAR) e
E: PVQAR &(PVQA P VR (dstibutivelaws)
E, NPA Qe TIPV TIQ ’
B2 W(PVQe IPA IQ (D Morpn v lem)
Eun P\NP&eP
Ey PANPeP
Ew RV(PA "1P)e=R
Fu RA(PV IP)e=R
Ey, RVPV IP)eT
Eys EA(PA VP)e=F
Ey Po2Qe '\ PVQ
E\y MP=Q)=PA T1Q
Eu P-*QH qu—* P
Ew P—oQ—-R)=(PAQ—-R
En PaQea(P-QARQR—PFP)
En (P=2QePAQV((TIPA Q)

EXAMPLE 2 Show that R V 8 follows logically from the premises C Vv D,
(CVD)—"H, " 1H— (A ATIB),and (A A 7IB) = (R V 8).

SOLUTION

{1}

{2]

(1,2

(4}

{1, 2, 4}
{6}

{1, 2,4, 6}

(1)
(2)
(3)
(4)
(5)
(6)
(7

(CvD)—-"1H
“1H — (A A T1B)
(Cv D)—(4AAT]B)
(AATIB)—=(RV S8
(CvD)—(RVS)
CvDbD

Rv S

L - B B - -

? (1): {2): and Ill
y (3), (4), and I

’ (5:’! {ﬁ]': ﬂ-Il.d III.

T0 MATHEMATICAL LOGIC

The two tautologies frequently used in the above derivations are I3, known
as hypothetical syllogism, and I;, known as modus ponens, /77

EXAMPLE 3 Show that S V R is tautologically implied by (P VvV @) A
(P—>R) A (Q—8).

BOLUTION

{1} (1) PVEQ

{1} (2) ! d T, (1), Ey, and Ej,

{3} (3) R—S P

{1, 3] 4 WP—=8 T,(2),3)and Iy

{1, 3} (5) 18—=PFP T, (4), Ey and E,

{6} (6) P—-R P

{1, 3, 6) (7) “1S—R T, (5), (6), and Iy

{1, 3, 6} (8) SVR T, (7), E, and E, i

EXAMPLE 4 Showthat B A (P V @) 18 a vahd conclusion from the premises
PvQQ—R P—-M,and |M.

SOLUTION

{1} (1) P—-M P

{2} (2) TIM P

(1, 2} (3) TP T, (1)}, (2), and I,

{4} 4 PVQ P

{1, 2, 4 (5 @ T, (3), (4), and Iy,

{6] 6) Q—R P

(1,2, 4, 6} (7) R T, (5), (6), and Iy

i1, 2, 4, 6} (8) R A(PVQ) T, (4), (7),and I, e

EXAMPLE 5 Show I2: 71Q, P — Q= "|P.

BOLUTION
{1} (1) P—Q P
{1} (2) R—"1P T, (1), and Eys
{3} 3) TR P
(1,3} 4 1P T, (2), (3), and I, /177

We shall now introduce a third inference rule, known as rule CP or rule
of conditional proof.

Rule CP If we can derive S from R and a set of premises, ther we can derive
R — S from the set of premises alone.

1-4 THE THEORY OF INFERENCE FOR STATEMENT CALCULUs Tl

Rule CP is not new for our purpose here because it follows from the equiv-
alence Ky which states that

(PAR)y—=8e=P—(R—2S)

Let P denote the conjunction of the set of premises and let i be any formula.
The above equivalence states that if R is included as an additional premise and
8 is derived from PP A R, then R — 8 can be derived from the premises P alone,

Rule CP is also called the deduction theorem and is generally used if the
conclusion i1s of the form R — §. In such cases, I 1s taken as an additional premise
and 8 is derived from the given premises and K.

EXAMPLE 6 Show that R — S can be derived from the premises PP —
(Q—8), 1RV P, and Q.

soLUTION Instead of deriving B — 8, we shall inelude R as an additional
premise and show S first.

{1} (1) IRV P P

12} (2) R P (assumed premise)

{1, 2 (3) P T, (1), (2), and Iy

14} 4 P->Q@—-5 P

i1, 2, 4] (3) Q— S T, (3), (4), and Iy

{6} (6) @ P

(1, 2, 4, 6} (%) S T, (5), (6), and Iy

{1, 4, 6} (8) R— 5 CP /117

These examples show that a derivation consists of a sequence of formulas,
each formula in the sequence being either a premise or tautologically implied by
formulas appearing before.

In See. 1-3.1 we discussed the decision problem in terms of determining
whether a given formula is a tautology. We can extend this notion to the deter-
mination of validity of arguments. Accordingly, if one can determine in a finite
number of steps whether an argument is valid, then the decision problem for
validity is solvable.

One solution to the decision problem for validity is provided by the truth
table method. Use of this method is often not practical. The method of deriva-
tion just discussed provides only a partial solution to the decision problem,
because if an argument is valid, then it is possible to show by this method that
the argument is valid. On the other hand, if an argument is not valid, then it is
very difficult to decide, after a finite number of steps, that this is the case. There
are other methods of derivation which do allow one to determine, after a finite
number of steps, whether an argument is or is not valid. One such method is de-
scribed in See. 1-4.4, and its computer implementation is given later in Sec. 2-7.

We shall now give some examples of derivation involving statements in

T2 MATHEMATICAL LOGIC

English. We first symbolize the given statements and then use the method of
derivation just discussed.

EXAMPLE 7 “If there was a ball game, then traveling was difficult, If they
arrived on time, then traveling was not difficult. They arrived on time. There-
fore, there was no ball game.” Show that these statements constitute a valid

argument.

SOLUTION Let
P: There was a ball game.

Q: Traveling was difficult.

R: They arrived on time,

We are required to show that from the premises P — @, R — 71Q, and R the
conclusion ~|P follows. (Complete the rest of the derivation.) s

EXAMPLE 8 If A works hard, then either B or C will enjoy themselves. 1f
B enjoys himself, then A will not work hard. If D enjoys himself, then C will not.
Therefore, if A works hard, ID will not enjoy himself.

sOLUTION Let A: A works hard; B: B will enjoy himself; C': C will enjoy
himself; D: D will enjoy himself, Show that A — 71D follows from A — B v C,
B — T)A, and D — T|C. Since the conclusion is given in the form of a condition
A — 1D, include A as an additional premise and show that ~]D follows logically
from all the premises including A. Finally, use rule CP to obtain the result. ////

1-4.3 Consistency of Premises and Indirect Method of Proof

A set of formulas H,, H, ..., Hn 18 said to be consistent if their conjunction has
the truth value T for some assignment of the truth values to the atomie vari-
ables appearing in H,, H,, ..., H.. If, for every assignment of the truth values
to the atomic variables, at least one of the formulas H,, H,, ..., Hn. is false, so
that their conjunction is identically false, then the formulas H,, H,, ..., Ha
are called inconsistent.

Alternatively, a set of formulas H,, H;, ..., H. 1s Inconsistent if their con-
junetion implies a contradiction, that is,

HANHs A---NHa=RA |R

where R is any formula. Note that B A " |R is a contradiction, and it is necessary
and sufficient for the implication that H, A Hs A -+ - A Ha be a contradiction.

The notion of inconsistency is used in a procedure called proof by contra-
diction or reductio ad absurdum or indirect method of proof. In order to show that
a conclusion C follows logically from the premises Hy, H,, ..., Ha, we assume
that C is false and consider 7 |C as an additional premise. If the new set of prem-
ises is inconsistent, so that they imply a contradiction, then the assumption that
TIC is true does not hold simultaneously with H, A H: A -+ A Hn being true.
Therefore, € 1s true whenever Hy A H: A --- A Ha 1s true. Thus, C follows
logically from the premises H,, Hs, ...; Ha.

-4 THE THEORY OF INFERENCE FOR STATEMENT CALCULUE 73

EXAMPLE 1 Show that 7(P A Q) follows from ~1P A T1Q.

soLUTION We introduce ~ | |(P A Q) as an additional premise and show
that this additional premise leads to a contradiction,

{1
(1
(1
(4]
(4]
11, 4}

(1)
(2)
(3)
(4)
(5)
(6)

1T (P AQ) P (assumed)

PAQ T, (1), and E;

P T, (2), and I

TP ATIQ P

P T, (4), Ih

PATIP T, (3), (5), Is /117

EXAMPLE 2 Show that the following premises are inconsistent.

1 If Jack misses many classes through illness, then he fails high school.
2 If Jack fails high school, then he is uneducated.

3 If Jack reads a lot of books, then he 18 not uneducated.

4 Jack misses many classes through iliness and reads a lot of books.

SOLUTION

E: Jack misses many classes.
S: Jack fails high school.

A : Jack reads a lot of books.
H : Jack is uneducated.

The premisesare ¥ —» S, S— 4, A — "|H,and £ A A,

{1}

{2}

(1,2}

(4]

(4]
(1,24}
(1,24}
(1,2, 4}
{9}

(1,2, 4,9

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

E—S8
S—H
E—H
A—H
H— "4
E— 1A
EV]A
“H(E A A)
EANA

(EAA)AN T(EAA)

P

P

T, (1), (2), and Iy
P

T, (4), Ex

T, (3), (5), In

T, (6), Ex

T, (7), ks

P

Tj (S}: {g)jfl)’jf/

Proof by contradiction is sometimes convenient. However, it can always
be eliminated and replaced by a conditional proof (CP). Observe that

P—{QA7T1Q)="1 (1)

In the proof by contradiction we show

HyHs, ...,Ho=C

T4 MATHEMATICAL LOGIC

by showing
Hy,H, ...,H.,, 1C=RA R (2)
Now (2) ean be converted to the following by using rule CP
Hy,Hy ..., H.="1C > (R A T]R) (3)

From (3) and (1) and F,;, we can show
Hy,Hy ..., Ho=C

which is the required derivation.

1-44 Automatic Theorem Proving

In this section we reformulate the rules of inference theory for statement caleulus
and describe a procedure of derivation which can be conducted mechanically.
The formulation given earlier could not be used for this purpose because the con-
struction of a derivation depends heavily upon the skill, expenence and ingenuity
of the person to make the right decision at every step.

Let us first examine the shortcomings of procedures used in any derivation
of Sec. 1-4.2. Rule P permits the introduection of a premise at any point in the
derivation, but does not suggest either the premise or the step at which it should
be introduced. Rule T allows us to introduce any formula which follows from the
previous steps. However, there is no definite choice of such a formula, nor is
there any guidance for the use of any particular equivalence. Similarly, rule CP
does not tell anything about the stages at which an antecedent is to be intro-
duced as an assumed premise, nor does it indicate the stage at which it is again
incorporated into the conditional. At every step, such decisions are taken from
a large number of alternatives, with the ultimate aim of reaching the conclusion.
Such a procedure is far from mechanical.

We shall now describe a set of rules and a procedure which allow one to
construct each step of derivation in a specified manner without recourse to any
ingenuity and finally to arrive at a last step which clearly indicates whether a
given conclusion follows from the premises. In this sense, not only is our pro-
cedure here mechanical, but it also becomes a full decision process for validity.

The formulation described here is essentially based upon the work of Hao
Wang.! Our system consisting of 10 rules, an axiom schema, and rules of well-
formed sequents and formulas will now be described.

1 Variables: The capital letters A, B, C, ..., P, Q, R, ... are used as
statement variables. They are also used as statement formulas; however, in such
cases the context will clearly indicate this usage.

2 Connectives: The connectives |, A, V, —, and & appear in the for-
mulas with the order of precedence as given; viz., ~ | has the highest precedence,
followed by A, and so on. The concept of well-formed formula is the same as

1 Hao Wang, Towarda Mechanical Mathematics, IBM J. Res. Devel., 4(1):
2-22 (1960).

14 THE THEORY OF INFERENCE FOR STATEMENT CALCULUS T5

given in Sec. 1-2.7 with the additional assumption of the precedence and asso-
ciativity of the connectives needed in order to reduce the number of parentheses
appearing in a formula.

3 Siring of Formulas: A string of formulas 1s defined as follows.

(a) Any formula is a string of formulas.

(b) If a and B are strings of formulas, then «, 8 and B, a are strings of formulas.

(¢) Only those strings which are obtained by steps (a) and (b) are strings of
formulas, with the exception of the empty string which is also a string of
formulas.

For our purpose here, the order in which the formulas appear in any string is not
important, and so the strings A, B, C: B, C, A; A, C, B; etc., are the same.

4 Sequents: If « and g are strings of formulas, then « = 8 is called
a sequent in which « is denoted the antecedent and 8 the consequent of the
sequent.

A sequent « = § is true 1ff either at least one of the formulas of the ante-
cedent is false or at least one of the formulas of the consequent is true. Thus
AB,CS D E FistrueiiA ABAC— DV E V Fistrue. In this sense, the
symbol ‘=" is a generalization of the connective — to strings of formulas.

In the same manner, we shall use the symbol “=s,"" applied to strings of
formulas, as a generalization of the symbol “=."” Thus A = B means *“A implies
B" or “A — B is a tautology,” while « = 8 means that « — g is true. For ex-
ample, P, Q, R= P, N,

Occasionally we have sequents which have empty strings of formulas as
antecedent or as consequent. The empty antecedent is interpreted as the logical
constant “lrue’’ or T, and the empty consequent is interpreted as the logieal con-
stant “‘false” or F.

5 Axiom Schema: If a and 8 are strings of formulas such that every for-
mula in both « and 8 is a variable only, then the sequent a — 8 is an axtom iff a
and g have at least one variable in common, As an example, A, B, C 5 P, B, R,
where A, B, C, P, and R are variables, 1s an axiom.

Note that if a = 8 is an axiom, then a = .

& Theorem: The following sequents are theorems of our system.

(a) Every axiom 1s a theorem,

(b) If a sequent a 1s a theorem and a sequent 8 results from « through the use
of one of the 10 rules of the system which are given below, then g8 1s a theo-
rem.

(¢) Sequents obtained by (a) and (b) are the only theorems.

Note that we have used a and 8 temporarily to denote sequents for the purpose
of the above description.

7 Rules: The following rules are used to combine formulas within strings
by introducing connectives. Corresponding to each of the connectives there are
two rules, one for the introduction of the connective in the antecedent and the
other for its introduction in the consequent. In the description of these rules,
a, B, v, ... are strings of formulas while X and Y are formulas to which the con-
nectives are applied.

76 MATHEMATICAL LOGIC

Antecedent Rules

Rule 7 1=: Ifa,f=X,v,thena, 71X, 8=7.

Rule A=: IfX,Y,q f=v,thena, X A Y, B=.

Rule V=: If X, o, 8=2vand ¥V, a,8=v,thena, X VY, 8=27.
Rule »=: IfY,a,f=vanda, 8=X,v,thena, X -V, 8=+.
Rule==: IfX,Y,q,f=2vanda,f=X,Y,v,thene, X2V, f=7.
Consequent Rules

Rule="1: If X,a=8, v, then a =8, "X, 7.

Rule=A: Ifa=X,8vanda=Y,8 v,thena=8 XA Y, ~.
Rule=V: Ifa=X,Y,8 v,thena=8 XV Y, v.

Rule=—: IfX, a=Y,8 v,thena=8X—-Y, .

Rule=2: IfX,a=Y,f8vyand Y, a=X,8 v,thena=8 X2Y, v.

Note that the order in which the formulas and strings of formulas appear
in a string in any of the above rules is unimportant. However, some kind of order-
ing is necessary in writing down the strings of formulas when an algorithm is
written for computer implementation of the procedure described here. We have
used a certain order in writing these rules with this point in mind. A computer
algorithm is given in Sec. 2-7,

The system described here is equivalent to the one described earlier except
that the procedures and techniques of derivation are different. This difference
does not affect the validity of an argument. Some of the rules just given corre-
spond to eertain equivalences given earlier (see Problem 9 in Exercises 1-2).

The description of our system is complete. We shall now describe the pro-
cedure used in practice.

In the method of derivation given in Sec. 1-4, we showed that a conclusion
C follows from the premises H,, Hs, ..., Hx by constructing a derivation whose
last step was C, and H,, H,, ..., Hm were introduced at various stages by using
rule P. This method essentially means showing

Hy,Hy, ..., Hu=C (1)
Another way of stating (1) is
HI—F(H:“—"' (H:(Hn_"c]"}) {2}

is a tautology (see Sec. 1-2.11),
Our new formulation is premise-free, so that in order to show that C follows

from H,, H,, ..., H., we establish that

> Hy,— (Hy— (Hy-- - (Ha—C)--+)) (3)
1s 4 theorem. We must show that
= Hy— (Hy— (Hy - (Hn—C)-++)) (4)

Our procedure involves showing (3) to be a theorem. For this purpose, we first
assume (4) and then show that this assumption is or is not justified. This task

14 THE THEORY OF INFERENCE FOR BTATEMENT CALCULUS 71

1s accomplished by working backward from (4), using the rules, and showing
that (4) holds if some simpler sequent is a theorem. (By a simpler sequent we
mean a sequent in which some connective is eliminated in one of the formulas
appearing in the antecedent or the consequent.) We continue working backward
until we arrive at the simplest possible sequents, i.e., those which do not have
any connectives. If these sequents are axioms, then we have justified our as-
sumption of (4). If at least one of the simplest sequents is not an axiom, then.
the assumption of (4) is not justified and C does not follow from Hy, Hs, ..., Hnm.
In the case when C follows from H,, Hy, ..., Ha, the derivation of (4) is easily
constructed by simply working through the same steps, starting from the axioms
obtained. We now demonstrate this procedure by means of examples.

EXAMPLE 1 Show that P v Q follows from P.

sOLUTION We need to show that

(1) SP—-(PVQ)
(1) if(2)PPVQ (=)
(2) if (3) P=P,Q (=V)

WE first ellmlna.te the connective — in (1). Using the rule = we have
“1fP==vP V @ then =e-P—-:r{P V @).” Here we have named P> p V Q by
{2} Each line of derivation thus introduces the name as well as gives a rule. Note
also that “(1) if (2)” means “‘if (2) then (1).” The chain of arguments is then
given by (1) holds if (2), and (2) holds if (3). Finally (3) is a theorem, because
it is an axiom. The actual derivation is simply a reversal of these steps in which
(3) is an axiom that leads to = P — (P V Q) as shown.

(¢) P=P,Q Axiom
(b) P=PVQ Rule (=V), (a)
() P> (PVEQ Rule(=-), (b /717

EXAMPLE 2 Show that = (T1Q A (P —Q)) — T|P.

SOLUTION

(1) =(T1@A(P—>Q)) — P

(1) if (2) TIRA(P>Q) ="7P (=—)
(2) if(3) " 1IQP—Q="1P (A=)
(3) f () P->Q=>71P,Q (" 1=)
(4) f(5)Q="1P,Qand (6) =P, IP,Q (—=)
(5) if () P,@=Q =1
(6) if (8) PSP, Q (="1])

Now (7) and (8) are axioms, hence the theorem (1) follows. We omit the de-
rivation, which is easily obtained by starting with the axioms (7) and (8) and
retracing the steps. /117

T8 MATHEMATICAL LOGIC

Note that in the solution of Example 2 in the second step we have two
alternatives available, viz., to eliminate either A in the antecedent of (2) or 7]
in the consequent. It is immaterial which elimination is earried out first. When
the process is carried ocut on a computer, we shall adopt the convention that for
any number of possible connectives that are available for elimination at a stage,
the one on the left is eliminated first. This procedure was actually followed in
the solution. We shall not follow this convention when the solution is obtained
by hand.

EXAMPLE 3 Does P follow from P Vv Q?

soLUTION We investigate whether — (P V @) — P is a theorem. As-
sume (1) = (P V Q) — P.

(1) f(QPVQSP (=—)
(2) if (3) P2Pand (4) Q2P (V=)

Note that (3) is an axiom, but (4) is not. Hence P does not follow from P V Q.
S E i

In some cases the derivation is longer if this procedure is used. The reason
is that for every connective appearing there is at least one step introduced. In
some steps a branching appears, and then we have to pursue two steps. We shall
now consider an example for which the derivation was given earlier in Sec. 1-4.1.

EXAMPLE 4 Show that S V R is tautologically implied by (P V Q) A
(P—R) A (Q— 8S) (see Example 3, Sec. 1-1.1).

soLUTION To show
(1) S(PVQA(P—=RAWQ—S8))—>(SVR)

(1) if (2) (PVQ A (P—R)A(Q—S8)=(SVR) (=—)
(2) f@)(PVQAP—-RAQR—S8=SR (=V)
3) f(4)(PVQ),(P—R),(Q@Q—-8 =S8R (A= twice)
(4) if (5) P,P>R, Q>S8R |

and (6) Q,P—-R, Q—-S=8 R (V=)
(5) if (7) P,R,Q—=8=S Rand (8) P,Q—S3P,S,R (—=)
(7) if (9) P,R, S8, Rard (10) P,R= S, R, Q (—=>)
(8) if (11)P,S=P,S,Rand(12) PP, S, R, Q (—=>)
(6) f(13)Q,R,Q—>S=S, Rand (14)Q,Q >SS, R, P (—=)
(13) if (15) Q,R, S= S, Rand (16) Q, R= S, R, Q (—=>)
(14) if(17)Q,S=S,R,Pand (18) Q= 8, R, P,Q (—=)

Now, (9) to (12) and (15) to (18) are all axioms; therefore the result follows.
The nesting of steps shows how the branching occurs. /117

I-5 THE PREDICATE CALCULUE 79

EXERCISES 1-4

1 Show the validity of the following arguments, for which the premises are given on the
left and the conclusion on the right.
(@) TP ATIQ), TRV B, IR 1P
() (A=B)A(A—=C), I(BAC),DV A D
(¢) "I > (MVN),(HVG) —->"1,HVG MVN
(@) P=Q,(CIRV R) AR, 1C1P A 8) 718

(e) (PAQ)—RTIRV 8,718 PV TIQ
(f) P>Q,Q— 1R, R, PV (J A 8) JAS

(¢g) BAC, (B20C)—=(HVG) GV H
(h) (P—>Q)—R,PA S, QAT R

2 Derive the following, using rule CP if necessary.

(a) " 1PVQ 1@V R R—S=P—=>S-S

(8) P,P—= (@2 (RA 8))=Q— S

(c) P=Q=P—(PAQ)

(d) (PVQ —R=(PAQ) —R

() P2 (Q—R), @ (R— 8)=P—(Q@—95)
8 Prove |PA (PV Q)= Q, using Ey;p, Eq, E;, and I, only.
Show that the following sets of premises are inconsistent.
(a) P=Q,P—R Q— R P
) A= (B—C),D—>(BA 1C),AAD
Hence show that P— Q, P— R, Q— R, P= M and

A= (B—=0C), D= (BANIC), AND=P

& Show the following (use indirect method if needed).

(a) (R—JQ), RV 8, 8—1Q, P> Q="]|P

() S— 1@, SV R, |R, |Re2Q="1P

(c) " HP—=Q)— "BV 8),((QR=P)V |R), R=Pa=¢Q
6 Show the following, using the system given in Sec, 1-4.4,

(a) P=(T1P—Q)

(b) PA 1PAQ=R

(c) R=PV 1PV Q

(d) P, 1PV (PAQ)=Q

(e) NPAQ)="1PV 10

e

1-5 THE PREDICATE CALCULUS

So far our discussion of symbolic logic has been limited to the consideration of
statements and statement formulas. The inference theory was also restricted
in the sense that the premises and conclusions were all statements. The symbols
P,QR,... P, @, ... were used for statements or statement variables. The
statements were taken as basic units of statement calculus, and no analysis of
any atomic statement was admitted. Only compound formulas were analyzed,
and this analysis was done by studying the forms of the compound formulas,
i.e.,, the connections between the constituent atomic statements. It was not
possible to express the fact that any two atomic statements have some features
in ecommon. In order to investigate questions of this nature, we introduce the
concept of a predicate in an atomic statement. The logic based upon the analysis
of predicates in any statement is called predicate logic.

80 MATHEMATICAL LOGIC

1-5.1 Predicates
Let us first consider the two statements

John i1s a bachelor.

Smith is a bachelor.,

Obviously, if we express these statements by symbols, we require two different
symbols to denote them. Such symbols do not reveal the common features of
these two statements: viz., both are statements about two different individuals
who are bachelors. If we introduee some symbol to denote ““is a bachelor’” and
a method to join it with symbols denoting the names of individuals, then we will
have a symbaolism to denote statements about any individual’s being a bachelor.
The part *“is a bachelor” is ealled a predicate. Another consideration which leads
to some similar device for the representation of statements is suggested by the
following argument.

All human beings are mortal,
John is a human being.
Therefore, John 1s a mortal.

Such a econclusion seems intuitively true. However, it does not follow from the
inference theory of the statement calculus developed earlier. The reason for this
deficiency is the fact that the statement “All human beings are mortal’”’ eannot
be analvzed to say anything about an individual. If we could separate the part
“are mortal” from the part “All human beings,” then it might be possible to
consider any particular human being.

We shall symbolize a predicate by a capital letter and the names of indi-
viduals or objects in general by small letters, We shall soon se= that using capital
letters to symbolize statements as well as predicates will not lead to any con-
fusion. Every predicate describes something about one or more objects (the
word “object” is being used in a very general sense to include individuals as
well). Therefore, a statement could be written symbolically in terms of the predi-
cate letter followed by the name or names of the objects to which the predicate is
applied.

We again consider the statements

1 John is a bachelor.
2 Smith is a bachelor.

Denote the predicate “is a bachelor” symbolically by the predicate letter B,
“John” by 4, and “Smith’’ by s. Then Statements (1) and (2) can be written as
B(j) and B(s) respectively. In general, any statement of the type “p is Q"
where Q is a predicate and p is the subject can be denoted by Q(p).

A statement which is expressed by using a predicate letter must have at
least one name of an object associated with the predicate, When an appropriate
number of names are associated with a predicate, then we get a statement. Using
a capital letter to denote a predicate may not indicate the appropriate number
of names associated with it. Normally, this number is clear from the context or
from the notation being used. This numbering can also be accomplished by at-

15 THE PREDICATE CALCULUB 81

taching a superscript to a predicate letter, indicating the number of names that
are to be appended to the letter. A predicate requiring m (m > 0) names is called
an m-place predicate. For example, B in (1) and (2) is a 1-place predicate.
Another example is that “L: is less than” is a 2-place predicate. In order to ex-
tend our definition to m = 0, we shall call a statement a 0-place predicate be-
cause no names are associated with a statement.

Let R denote the predicate “is red” and let p denote ‘“This painting.”’ Then
the statement

8 This painting is red.

can be symbolized by E(p). Further, the connectives described earlier can now
be used to form compound statements such as “John is a bachelor, and this paint-
ing is red,” which can be written as B(j) A R(p). Other connectives can also
be used to form statements such as

B(j) — R(p) TR (p) B(j) V R(p) ete.

Consider, now, statements involving the names of two objects, such as

4 Jack is taller than Jill.
& Canada is to the north of the United States.

The predicates ‘““is taller than and “is to the north of’’ are 2-place predicates
because names of two objects are needed to complete a statement involving
these predicates. If the letter ¢ symbolizes “is taller than,” j, denotes “Jack,”
and j; denotes ‘‘Jill,”” then Statement (4) can be translated as G(ji, j:). Note
that the order in which the names appear in the statement as well as in the predi-
cate is important. Similarly, if N denotes the predicate “‘is to the north of,” e:
Canada, and s: United States, then (5) is symbolized as N (¢, s). Obviously,
N (s, ¢) is the statement “The United States is to the north of Canada.”
Examples of 3-place predicates and 4-place predicates are:

6 Susan sits between Ralph and Bill.
7 Green and Miller played bridge against Johnston and Smith.

In general, an n-place predicate requires n names of objects to be inserted
in fixed positions in order to obtain a statement. The position of these names is
important. If S is an n-place predicate letter and ay, as, ..., a, are the names of
objects, then S(ay, as, ..., a.) 18 a statement. If we use this convention, every
predicate symbol is followed by an appropriate number of letters, which are the
names of objects, enclosed in parentheses and separated by commas. Occasionally,
the parentheses and the commas are dropped. The definition does not require
that the names be chosen from any fixed set. For example, if B denotes the predi-
cate “‘is a bachelor” and ¢ denotes “This table,” then B(t) symbolizes “This table
is a bachelor.” In our everyday language, the only admissible name in this con-
text would be that of an individual. However, such restrictions are not necessary
according to the rules given above. We show a method of imposing such restrie-
tions in Seec. 1-5.5.

82 MATHEMATICAL LOGIC

1-5.2 The Statement Function, Variahles, and Quantifiers

Let H be the predicate ‘‘is a mortal,” b the name “Mr. Brown,” ¢ “Canada,”
and s “A shirt.” Then H(b), H(c), and H(s) all denote statements. In fact,
these statements have a common form. If we write H (z) for *‘z is mortal,” then
H(b), H(c), H(s), and others having the same form can be obtained from H (z)
by replacing z by an appropriate name. Note that H (x) is not a statement, but
it results in a statement when z is replaced by the name of an object. The letter
z used here is a placeholder. From now on we shall use small letters as individual
or object variables as well as names of objects.

A simple statement function of one variable is defined to be an expression
consisting of a predicate symbol and an individual variable, Such a statement
function becomes a statement when the variable is replaced by the name of any
object. The statement resulting from a replacement is called a substitution instance
of the statement function and is a formula of statement calculus,

The word “simple’” in the above definition distinguishes the simple state-
ment function from those statement functions which are obtained from combining
one or more simple statement functions and the logical connectives. Ior example,
if we let M (z) be ““z is a man'’ and H (x) be “z is a mortal,” then we can form
compound stalement functions such as

Mz AH{(z) M(x)—H(z) " 1H({zx) Miz)vVv 1H(z) ete

An extension of this idea to the statement functions of two or more vari-
ables is straightforward. Consider, for example, the statement function of two
vanables:

1 Gz, y): zis taller than y.

If both x and y are replaced by the names of objects, we get a statement. If m
represents Mr. Miller and f Mr. Fox, then we have

G(m, f) : Mr. Miller is taller than Mr. Fox.
and
(f, m): Mr. Fox is taller than Mr, Miller.

It is possible to form statement funections of two variables by using state
ment functions of one variable. For example, given

M(z): zis a man.
H(y): y1s a mortal.
then we may write

M{z) A H(y): xr1s a man and y is a mortal.

It is not possible, however, to write every statement function of two vari-
ables using statement functions of one variable.

One way of obtaining statements from any statement function 1s to replace
the variables by the names of objects. There is another way in which statements
can be obtained. In order to understand this alternative method, we first con-
sider some familiar equations in elementary algebra,

1-5 THE PREDICATE CALCULUB 83

2 z4+2=25

8 22+1=0

4 (z—1) %k (x—3) =0

§ 22=1=(x~-1) % (z+1)

In algebra, it is conventional to assume that the variable z is to be replaced by
numbers (real, complex, rational, integer, ete.). In the above equations, we
would not normally consider substituting for z the name of a person or object
instead of numbers. We may state this idea by saying that the universe of the
variable z is the set of real numbers or complex numbers or integers, etc. The
restriction depends upon the problem under consideration. For example, we may
be interested in only the real solution or the positive solution in a particular case.
In Statement (2), if x is replaced by a real number, we get a statement. The
resulting statement is true when 3 is substituted for z, while, for every other sub-
stitution, the resulting statement is false. In (3) there is no real number which,
when substituted for r, gives a true statement. If, however, the universe of =
includes complex numbers as well, then we find that there are two substitution
instances which give true statements. In (4), if the universe of z is assumed to
be integers, then there is only one number which produces a true statement when
substituted. The situation is slightly different in (5) in the sense that if any
number is substituted for z, then the resulting statement is true. Therefore, we
may say that

6 Foranynumberz, 2? — 1= (z—1) % (z + 1).

Note that (6) is a statement and not a statement function even though a vari-
able r appears in it. In fact, the addition of the phrase “For any number z,"
has changed the situation. The letter z, as used in (6}, 1s different from the vari-
able r used in Statements (2) to (5). In (6) the variable r need not be replaced
by any name to obtain a statement. In mathematics this distinction is often not
made. Occasionally when a statement involves an equality, a distinction is made
by using the symbol = instead of the equality sign to show that it is a statement.
In this case, (6) would be writtenas 22 — 1 = (r — 1) % (x4 1). A similar
situation occurs when a statement function does not involve an equality, and a
distinetion 1s necessary in logic between these two different uses of the variables.

Let us first consider the following statements. Each one is a statement
about all individuals or objects belonging to a certain set.

7 All men are mortal.
8 Every apple 1s red.
9 Any integer is either positive or negative.

Let us paraphrase these in the following manner.

7a For all z, if z is a man, then z is a mortal.
8a For all z, if z is an apple, then z is red.
9a For all z, if z is a integer, then z is either positive or negative,

We have already shown how statement functions such as “z iz a man,”
“z is an apple,”’ or “z is red” can be v ritten by using predicate symbols. If we
introduce a symbol to denote the phrase “For all z,” then it would be possible to
symbolize Statements (7a), (8a), and (9a).

84 MATHEMATICAL LOGIC

We symbolize “For all '’ by the symbol “(V¥z)"” or by “(z)” with an
understanding that this symbol be placed before the statement funection to which
this phrase 1s applied. Using

M(z): x is man. H(z): z 18 a mortal.

A(z): zis an apple. R(z): z is red.

N(z): z is an integer. P(x): x 1s either positive or negative.
we write (7a), (8a), and (9a) as

W (2)(M(z) — H(x))
8b (z)(A(x) — R(zx))
9 (z)(N(z) — P(2))

Sometimes (x) (M (x) — H(z)) 18 also written as (Vz)(M(z) — H(z)).
The symbols (x) or (Vx) are called universal quaniifiers. Strictly speaking, the
quantification symbel 18 *“(}"” or “(V),” and it contains the variable which is
to be quantified. It is now possible for us to quantify any statement funection of
one variable to obtain a statement. Thus (2) M (z) is a statement which can be
translated as

10 For all z, x 1s a man.
10a For every z, x is a man.
106 Everything 1s a man,

In order to determine the truth values of any one of these statements in-
volving a universal quantifier, one may be tempted to consider the truth values
of the statement funetion which is quantified. This method is not possible for
two reasons. First, statement funetions do not have truth values. When the van-
ables are replaced by the names of objects, we get statements which have a truth
value. Second, in most cases there is an infinite number of statements that can
be produced by such substitutions.

Note that the particular variable appearing in the statements involving
a quantifier is not important because the statements remain unchanged if z
1s replaced by y throughout. Thus the statements (x)(M(z) — H(x)) and
(y) (M (y) — H(y)) are equivalent.

Sometimes 1t 18 necessary to use more than one universal quantifier in a
statement. I'or example consider

(:{x, y): x1s taller than .

We can state that “For any r and any #, if 2 1s taller than y, then y is not taller
than ="’ or “IF'or any x and y, if z 1s taller than y, then 1t 1s not true that y 1s taller
than z.” This statement can now be symbolized as

() () (Glx, y) — NGy, x))

The universal quantifier was used to translate expressions such as “for all,”
“every,” and “for anv.” Another quantifier will now be introduced to symbolize
expressions such as “for some,” “there 1s at least one,” or “there exists some”
(note that “some’ 18 used in the sense of “at least one').

1-5 THE PREDICATE CALCULUS 85

Consider the following statements:

11 There exists a man.
12 Some men are clever.
18 Some real numbers are rational.

The first statement can be expressed 1n various ways, two such ways being

11a There exists an x such that z is a man.
11b There i1s at least one z such that z is a man.

Similarly, (12) can be wr_ittren as

12a There exists an x such that x is a man and x is clever.
12b There exists at least one z such that r is a man and z is clever.

Such a rephrasing allows us to introduce the symbol ““(3z),” called the existential
quantifier, which symbolizes expressions such as “‘there 1s at least one x such that”’
or ““there exists an x such that’’ or “for some z.”” Writing

M(x): x1s a man.
C(z): zis clever.
Ry(x): z is a real number.

Ra(x): x 1s rational.
and using the existential quantifier, we can write the Statements (11) to (13) as

11¢ (3z) (M (x))
12¢ (32)(M(z) A C())
13¢ (3z)(Ri(z) A Re(a))

It may be noted that a conjunction has been used in writing the statements
of the form “Some A are B,”” while a conditional was used in writing statements
of the form ““All A are B.” To a beginner this usage may appear confusing. We
show in Sec. 1-5.5 why these connectives are the right ones to be used in these
cases.

1-5.3 Predicate Formulas

Recall that capital letters were first used to denote some definite statements.
Subsequently they were used as placeholders for the statements, and, in this
sense, they were called statement variables. These statement variables were also
considered as special cases of statement formulas.

In Secs. 1-5.1 and 1-5.2 the capital letters were introduced as defimte predi-
cates. It was suggested that a superseript n be used along with the capital letters
in order to indicate that the capital letter is used as an n-place predicate. How-
ever, this notation was not necessary because an n-place predicate symbol must
be followed by n object vaniables. Such variables are called object or tndividual
variables and are denoted by lowercase letters. When used as an n-place predicate,
the capital letter is followed by n individual variables which are enclosed in
parentheses and separated by commas. For example, P(zy, xs, ..., z,) denotes
an n-place predicate formula in which the letter P is an n-place predicate and

86 MATHEMATICAL LOGIC

T1, T2, . . ., Zn are individual variables. In general, P(xy, 2o, . .., z.) will be called
an atomic formula of predicate calculus. It may be noted that our symbolism
includes the atomic formulas of the statement caleulus as special cases (n = 0).
The following are some examples of atomie formulas,

R Q@) P,y A(x,y,2) Pla,y) and A(z,a,2)

A well-formed formula of predicate calculus is obtained by using the following
rules.

1 An atomic formula is a well-formed formula.

2 If A is a well-formed formula, then "4 18 a well-formed formula.

3 If A and B are well-formed formulas, then (A A B), (A v B), (A — B),
and (A = B) are also well-formed formulas.

4 If A is a well-formed formula and z is any variable, then (z)A and
(3z) A are well-formed formulas,

& Only those formulas obtained by using rules (1) to (4) are well-formed
formulas,

Since we will be concerned with only well-formed formulas, we shall use
the term “formula” for “well-formed formula.” We shall follow the same con-
ventions regarding the use of parentheses as was done in the case of statement
formulas.

1-5.4 Free and Bound Variables

Given a formula containing a part of the form (x)P(z) or (3z)P(x), such a
part is called an z-bound part of the formula. Any occurrence of z in an z-bound
part of a formula is called a bound oceurrence of x, while any occurrence of x or of
any variable that is not a bound occurrence is called a free occurrence. Further,
the formula P(x) either in (z)P(z) or in (3x)P(zx) is described as the scope
of the quantifier. In other words, the scope of a quantifier is the formula im-
mediately following the quantifier. If the scope is an atomie formula, then no
parentheses are used to enclose the formula; otherwise parentheses are needed.
As illustrations, consider the following formulas:

(2)P(z, y) (1)
() (P(z) — Q(z)) (2)
(2) (P(x) — () B(z, y)) (3)
() (P(z) = R(z)) V (z) (P(z) = Q(2)) (4)
(3z) (P(z) A Q(2)) (5)
(32)P(x) A Q) (6)

In (1), P(x, y) is the scope of the quantifier, and both occurrences of z are
bound occurrences, while the oceurrence of y is a free occurrence. In (2), the
scope of the universal quantifier is P(z) — Q(x), and all occurrences of r are
bound. In (3), the scope of (z) is P(z) — (3y)R(z, y), while the scope of (3y)
is R(x, y). All oceurrences of both r and y are bound occurrences. In (4), the
scope of the first quantifier is P(z) — R(z), and the scope of the second is

1-5 THE PREDICATE CALCULUS 87

P(z) — Q(z). All occurrences of x are bound occurrences. In (5), the scope of
(3x) is P(z) A Q(z). However, in (6) the scope of (3z) is P(z), and the last
occurrence of z in Q(z) is free.

It is useful to note that in the bound occurrence of a variable, the letter
which is used to represent the variable is not important. In fact, any other letter
can be used as a variable without affecting the formula, provided that the new
letter is not used elsewhere in the formula. Thus the formulas

(z)P(z, y) and (2)P(z, y)

are the same. Further, the bound occurrence of a variable cannot be substi-
tuted by a constant; only a free occurrence of a vanable can be. For example,
(z)P(z) A Q(a) is a substitution instance of (x)P(z) A Q(y). In fact, (z)P(z) A
Q(a) can be expressed in English as *Every x has the property P, and a has the
property Q.” A change of variables in the bound oceurrence is not a substitution
~ instance. Sometimes it is useful to change the variables in order to avoid con-
fusion. In (6), it is better to write (y)P(y) A @Q(z) instead of (2)P(z2) A Q(z),
so as to separate the free and bound occurrences of variables. Oceasionally,
one may come across a formula of the type (z) P(y) in which the occurrence of
y is free and the scope of (z) does not contain an z; in such a case, we have a
vacuous use of (z). Finally, it may be mentioned that in a statement every oc-
currence of a variable must be bound, and no variable should have a free oc-
currence. In the case where a free variable occurs in a formula, then we have a
statement function.

EXAMPLE 1 Let
P(z): z is a person.
F(z, y): z is the father of y.
M (z,) : z is the mother of y.

Write the predicate “z is the father of the mother of 3.”

sOLUTION In order to symbolize the predicate, we name a person called
z a8 the mother of y. Obviously we want to say that x is the father of z and 2 the
mother of y. It is assumed that such a person z exists. We symbolize the predicate
as

(32)(P(2) A F(z,2) A M(2,v)) 117/

EXAMPLE 2 BSymbolize the expression ‘‘All the world loves a lover.”

soLUTION First note that the quotation really means that everybody loves
a lover. Now let

P(x): z is a person.
L(z): z 18 a lover.
R(z, y): x loves y.
The required expression is

(2) (P(z) = (¥) (P(y) A L(y) — E(z,9))) /117

i

88 MATHEMATICAL LOGIC

1-5.5 The Universe of Discourse

Example 2 in Sec. 1-5.4 shows that the process of symbolizing a statement in
predicate calculus can be quite complicated. However, some simplification can
be introduced by limiting the class of individuals or objects under consideration.
This limitation means that the variables which are quantified stand for only those
objects which are members of a particular set or elass. Such a restricted class is
called the universe of discourse or the domain of individuals or simply the uni-
verse. If the discussion refers to human beings only, then the universe of dis-
course 18 the class of human beings. In elementary algebra or number theory, the
universe of discourse could be numbers (real, complex, rational, etec.).

EXAMPLE 1 Symbolize the statement ‘All men are giants.”

soLuTiIoN Using
G(z): z is a giant.

M(z): z is a man.

the given statement can be symbolized as (z) (M(z) — G(z)). However, if we
restrict the variable x to the universe which 1s the class of men, then the state-
ment 13

(x)G(z) /1]

EXAMPLE 2 Consider the statement “Given any positive integer, there is a
greater positive integer.” Symbolize this statement with and without using the
set of positive integers as the universe of discourse.

sOLUTION Let the variables x and y be restricted to the set of positive in-
tegers. Then the above statement can be paraphrased as follows: For all z, there
exists a y such that y is greater than z. If G(z, y¥) i “x is greater than y,” then the
given statement is (z) (3y)G(y, z). If we do not impose the restriction on the
universe of discourse and if we write P(z) for “z is a positive integer,” then we

can symbolize the given statement as (z) (P(z) — () (P(y) A G(y, z))).
/117

The universe of discourse, if any, must be explicitly stated, because the
truth value of a statement depends upon it. For inat.amuedJr consider the predicate

Q(z): x is less than 5.

and the statements (z)Q(z) and { 3z)Q(z). If the universe of discourse is given
by the sets

1 I_lrur 1:214}
2 igr _2: ?r ’B: _2}
3 |15, 20, 24)

then (z)Q(z) is true for the universe of discourse (1) and false for (2) and (3).
'i"e statement { 3z)Q(z) is true for both (1) and (2), but false for (3).

It may be noted that there are two ways of obtaining a 0-place predicate
from an n-place predicate. The first way is to substitute names of objects from

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

92 MATHEMATICAL LOGIC

of the predicate calculus with the understanding that the atomic variables there
stand for prime predicate formulas.

The valid formulas obtained in this manner do not exhaust all possible
valid formulas. There are several other valid formulas, particularly those in-
volving quantifiers, which are useful. Such valid formulas are obtained in Seec.
1-6.4 by using the inference theory of predicate logic.

1-6.2 Some Valid Formulas over Finite Universes

In this and in the following section we denote predicate formulas by capital letters
such as A, B, C, - - - followed by object variables x, y, - - -. Thus A(z), A(z, y),
B(y), and C(z, y, z) are examples of predicate formulas. Some clarification is
necessary at this stage. In the formula A (z), we wish to say that A is a predicate
formula in which z is one of the free variables. This variable z is of interest to
us, and we want to emphasize the dependence of A on it. For example, we may
write B(z) for (y)P(y) V Q(x).

If in a formula A (z) we replace each free occurrence of the variable z by
another variable y, then we say that y is substifuled for x in the formula, and the
resulting formula is denoted by A (y). For such a substitution, the formula A (x)
must be free for y. A formula A (z) is said to be free for y if no free occurrence of
z is in the scope of the quantifiers (y) or (3y). If A(z) is not free for y, then it
is necessary to change the variable ¥, appearing as a bound variable, to another
variable before substituting ¥ for z. If ¥ is to be substituted, then it is usually a
good idea to make all the bound variables different from y. The following ex-
amples show what A (y) is for a given A (z).

Alz) Aly)

Pz, y) A Qv)Q(y) Plyw A Q@) or Plyy) A (32)Q(2)
(S(z) A S(y)) V (x)R(z) (B A S(y)) V(z)R(z) or (S A S(y) V (2)R(z)

The following formulas are not free for y.

P(z,y) A (1)Q(=, y) (¥) (S(y) — S(2))

In order to substitute y in place of the variable z in these formulas, it is necessary
to first make them free for y as follows:

Alz) Ay)

Py A @Rz Py A (2)Q(y,2)
(2)(3(z) — 8(z)) (2)(S(z) — S(y))

If the universe of discourse is a finite set, then all possible substitutions of
the object variables can be enumerated. However, it is not possible to enumerate
all possible substitutions if the universe of discourse is infinite. We shall now give
some equivalences which hold for a finite universe. Later we show that these
equivalences also hold for an arbitrary universe.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

9% MATHEMATICAL LOGIC

1-6.4 Theory of Inference for The Predicate Calculus

The method of derivation involving predicate formulas uses the rules of inference
given for the statement calculus and also certain additional rules which are re-
quired to deal with the formulas involving quantifiers. The rules P and T, regard-
ing the introduction of a premise at any stage of derivation and the introduetion
of any formula which follows logically from the formulas already introduced,
remain the same. If the conclusion is given in the form of a conditional, we shall
also use the rule of conditional proof called CP. Oceasionally, we may use the
indireet method of proof in introducing the negation of the conelusion as an addi-
tional premise in order to arrive at a eontradietion.

The equivalences and implications of the statement calculus can be used
in the process of derivation as before, except that the formulas involved are gen-
eralized to predicates. But these formulas do not have any quantifiers in them,
while some of the premises or the conclusion may be quantified. In order to use
the equivalences and implications, we need some rules on how to eliminate quan-
tifiers during the course of derivation. This elimination is done by rules of speci-
Sication called rules US and ES. Once the quantifiers are eliminated, the derivation
proceeds as in the case of the statement calculus, and the eonclusion is reached.
It may happen that the desired conclusion is quantified. In this case, we need
rules of generalization called rules UG and EG, which e¢an be used to attach a
quantifier.

The rules of generalization and specification follow. Here A (z) is used to
denote a formula with a free occurrence of z. A (y) denotes a formula obtained
by the substitution of ¥ for z in A (z). Reecall that for such a substitution A (z)
must be free for y.

Rule US (Universal Specification) From (z)A(z) one can coneclude A (y).

Rule ES (Existential Specification) From (3z)A(x) one can conclude
A(y) provided that y is not free in any given premise and also not free in
any prior step of the derivation. These requirements can easily be met by
choosing a new variable each time ES is used. (The conditions of ES are
more restrictive than ordinarily required, but they do not affect the pos-
sibility of deriving any conclusion.)

Rule EG (Existential Generalization) From A(z) one can conclude
() A(y).

Rule UG (Universal Generalization) From A(z) one can conclude (y)A(y)
provided that z is not free in any of the given premises and provided that
if z 1s free in a prior step which resulted from use of ES, then no variables
introduced by that use of ES appear free in A (z).

We shall now show, by means of an example, how an invalid conclusion
could be arnived at if the second restriction on rule UG were not imposed. The
other restrictions on ES and UG are easy to understand.

Let D(w, v): u is divisible by v. Assume that the universe of discourse is
{5, 7, 10, 11}, so that the statement (3u) D(u, 5) is true because both D (5, 5)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

100 MATHEMATICAL LOGIC

fiers occur in combinations. These combinations are possible even in the case
of 1-place predicates, and they become particularly important in the case of
n-place predicates (n > 2). For example, if P(z, y) is a 2-place predicate formula,
then the following possibilities exist:

(z) (y) Pz, y) (2)(3y) Pz, y) (3z) (y) Pz, y)
(3=)()P(x,y) (y)(z) Pz, y) (Iy) (z) P(=x, y)
(y)(3x)P(z, y) (3y)(3z)P(x, y)

It is understood that (z)(y)P(z, y) stands for (2)((y)P(z, y)) and (3z)(y) Pz, y)
for (3z) ((y)P(z, y)). The brackets are not used because even without them
there is no possibility of misunderstanding the meaning. I'rom the meaning of
the quantifiers, the following formulas ean be obtained.

() (W) Pz, y) = (y) (z) Pz, y) (1)
() (W Pz, y) = (W) (z) Pz, y) (2)
(1) () Pz, y) = (32) () Pz, y) (3)
(3y) () P(z, y) = (2) () Plx, y) (4)
(3z) (P, y) = () (3x) Pz, y) (5)
() () Pz, y) = () (3x) Plx, y) (6)
(¥) () Pz, y) = (32)(3y Pz, y) (7)
(32} () Pz, y) & () () P(x, y) (8)

Figure 1-6.1 shows implications (2) to (7) and equivalences (1) and (8). One
can also prove these implications and equivalences using the method of deriva-
tion given in the previous section.

The negation of any of the above formulas can be obtained by repeated
applications of the equivalences Eys and Ej of Sec. 1-6.3. For example,

13 (@) Pz, y) = () C)Pz, y)) & () (3x) 1Pz, y)

The negations of other formulas of this type are obtained in a similar manner.
The inference rules and the method of derivation as given in Sec. 1-6.4
Uso apply to n-place predicate formulas. Obviously, some special care would

(x)(¥) (¥Mx)

. ak

(n
{2) {3}
(Ay)¥(x) (Ax}y)

(4) (3)

: 1

(x) Ay
6) 7 (¥M3Ax)

(8)
(AyH3Ax) (FxMAy)

FIGURE 1-6.1 Graphical representation of relationships among formulas
involving two quantifiera,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

2

SET THEORY

INTRODUCTION

The concept of a set 1s used in various disciplines and particularly often in mathe-
matics. In this chapter, we introduce elementary set theory. An axiomatie ap-
proach to the discussion and questions of a philosophical nature will be avoided.
Although our presentation remains informal, we trv to indieate formal proofs
which use the notation and the rules of inference given in Chap. 1. As we proceed,
an analogy will be drawn between the statement calculus and the set operations
leading to a set algebra which is similar to the statement algebra given earlier.
Initially, the notation of set theory is introduced and ecertain operations are de-
fined. Then follows an introduction to the representation of diserete structures,
The eoncepts of relations, orderings, and functions are presented after a discus-
sion of the algebra of sets. A particular type of funetion known as a binary opera-
tion prepares us for a discussion of algebraic structures, which form the subject
matter of Chap. 3. A speecial function known as a hashing funetion, which maps
a name into an integer and permits us to handle nonnumeric data, is discussed.
The natural numbers are introduced, and the prineiple of mathematical indue-
tion is given. A discussion of recursive functions then follows. Certain applications

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

108 sET THEORY

It is enough to note at this stage that set inclusion is reflexive and transitive.
These terms are explained in See. 2-3.2. The proof of Statement (1) is obvious,
while Statement (2) ean be proved by using the implication

(z)(zc Az B)A(z)(z€ BozecC)=(z)(z€ A—>zc ()
(see Example 2, Sec. 1-6.4). For two sets A and B, note that A € B does not
necessarily imply B © A except for the following case.
Definition 2-1.2 Two sets A and B are said to be egual (extensionally
equal) iff A € Band B C A, or symbolically,
A=Be (ACBABCA)
From the equivalence
(z) ((P(z) = Q(z)) A (Q(x) = P(x))) < (2)(P(z) 2 Q(2))
we can alternatively define the equality of two sets as
A=Be(zx){zc A2zxc B)
We now give some examples of sets that are equal and sets that are not
equal.
(1,2,4} = (1,22, 4}.
(1,4,2) = {1,24}.
If P = {{1,2],4} and Q = {1, 2,4}, then P Q.
1{1}} # {1} because {1} € [|1}] while 1 ¢ {1}.
IfA=|{z|z(x—1) =0} and B = {0,1}, then A = B.

11, 3,5, ...] = {z| zis an odd positive integer}.
From the definition of equality of sets it is clear that
A=BoeB=A

The equality of sets is reflexive, symmetric, and transitive.

Definition 2-1.3 A set A is called a proper subset of a set B if A C B and
A # B. Symbolically it is written as A C B, so that

ACB&® (ACBAA#B)
A C B is also called a proper inclusion.
A proper inclusion is not reflexive; however, it is transitive, i.e.,

(ACB)ABCCU=ACC0)

We shall now introduce two special sets, of which one includes every set
under discussion while the other is included in every set under discussion.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

112 BET THEORY

say here that operations on one or more sets produce other sets according to
~ certain rules.

Definition 2-1.8 The interseclion of any two sets A and B, written as
A n B, is the set consisting of all the elements which belong to both A and B.
Symbolically,

AnB = [z|(z€ A) A (z€ B)}

From the definition of intersection it follows that for any sets A and B,
AnB=BnA AnA=A4 and Ang = & (1)

The first of these equalities shows that the intersection is commutative. The im-
portance of the other two will be discussed later. The commutativity of inter-
section can be proved in the following manner. For any z,
r€ ANBezxzc lz|(z€ A) A (z€ B)}
=(zx€c A) A(zc B)
= (€ B)AN(xec A)
=2z€lzx|{(z€B)A(z€ A)}
=z & BnA
The other two equalities in Eq. (1) can be proved in a similar manner.

Since A N B is a set, we ean consider its intersection with another set C,
so that

(ANB)NC = {z|z¢ ANB A z¢< C}

Using(zce AANz€EB)AzeECe=zc AAN(xE BAze (), wecan easily
show that

(AnBYNC =4An(Bn(C) (associative) (2)
In view of Eq. (2), wecan write (AnB)nCasAnBnC.
For an indexed set A = [A;, Aq, ..., 4.} = [A:}liq where I, =
{1, 2, ..., n}, we write

AlﬂA:ﬂ*--ﬂA.. =(‘1‘A1= M .:’L-

im=] iely
In general, for any index set J,
MA; ={z|z€ A;foralli € J}

S

Definition 2-1.9 Two sets A and B are called disjoint iff AnB = &,
that is, A and B have no element in common.

Definition 2-1.10 A collection of sets is called a disjoint collection if, for
every pair of sets in the collection, the two sets are disjoint. The elements
of a disjoint collection are said to be mutually disjoind.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

116 SET THEORY

Show that AT B AUB= B,

If S = {a,b, ¢}, find nonempty disjoint sets A, and A, such that 4, U A, = S. Find
other solutions to this problem.

Prove the equalities in Eqs. (4) and (5).

Given A = {2,3,4},B= {1,2},and C = {4,5,6},find A4+ B,B+ C, 4 + B+C,
and (A + B) + (B+ ().

o

-~ >

2-1.5 Venn Diagrams

Introduction of the umversal set permits the use of a pictorial device to study
the connection between the subsets of a universal set and their intersection,
union, difference, and other operations. The diagrams used are called Venn dia-
grams. A Venn diagram is a schematic representation of a set by a set of points.
The universal set E 1s represented by a set of points in a rectangle (or any other
figure), and a subset, say A, of E 1s represented by the interior of a cirele or
some other simple closed curve inside the rectangle. In Fig. 2-1.1 the shaded
areas represent the sets indicated below each figure. The Venn diagram for
ACBand AnB = & are also given. From some of the Venn diagrams it is

A7 2
) Q)
%

FIGURE 2-1.1 Venn diagrams.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

All the identities just given are presented in pairs except for the identity
(11).'This pairing is done because a prineiple of duality similar to the one given for
statement algebra (see Sec. 1-2.10) also holds in the ease of set algebra. In fact,
the prineiple of duality holds for any Boolean algebra. At present it is sufficient
to note that given any identity of the set algebra, one can obtain another identity
by interchanging U with n and £ with &.

Assuming identities (4) to (6), we shall prove the absorption laws. First
note that

AU(ANB) = (AUA)N(AUB) =An(AuB)
from the distributive and idempotent laws. Now
AU(ANB) =(AnE)U(AnB) from (5)

= ANn(EUB) from (4)
=AnkE from (6)
= A from (5)

Alternatively one can prove it as follows. For any z,

z€ AU(AnB)=zclz|(z€ A)V ((ze A) A (x€ B)))
=zrc jx|lxe A

=i A

using the absorption laws of predicate calculus.
In order to complete our discussion, we list some implications and certain

set, inclusions
(AUB# @)= (A=) V (B#J) (12)
(AnB=gZ)= (A=) N (B#J) (13)

To prove the implication (12), let us assume that A == FV B # J 1is
false. This requires that A # & is false and also that B # J is false, that is,
A=B=Z Butthen AUB = &, so that A UB # & is also false. Hence the
implication is proved. One could also have proved (12) by assuming that
A UB # & is true and showing that this assumption requires A # & V B #
to be true. Implication (13) can be proved in a similar manner.,

The following inclusions follow from the definition and have been proved

earlier in this section.

AnBC A ANBCB - ACAUB A—-BCA (14)
Let A be a family of indexed sets over an index set I such that A = [A4,,
Az ...} = {Ai}ia. Then

\JA;,={z|z€ A, for some: ¢ I} (15)
il

MNA; = {z|zc A;for every i € I} (16)
il

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

[TS

124 SET THEORY

and B and is written as A X B. Accordingly,
AXB=1{{y)|(z€ A) A (y€ B)}
EXAMPLE 1 If A = |e, 8} and B = {1, 2, 3}, what are A X B, B X A,
AXA BXB,and (A XB)n(B X A)?
SOLUTION
AXB = {{a 1), (o, 2), {a, 3}, (8, 1), (8,2), 8,3}
BX A = {{,a) {2 a), @, a), (1,8), 2,8), 3,8
AXA = {{aa), (o B8), 8, a), B 8)
BXB=1{(,1)(1,2),(1,3),{2,1),{2,2),(23), 3,1),
(3, 2), (3. 3)}
(AXB)N(BXA) =g /117

EXAMPLE 2 IfA =@ and B = {1,2,3] whatare A X Band B X A?

SOLUTION
AXB=g =BXA /177

Before we consider the cartesian product of more than two sets let us con-
sider the expressions (4 X B) X C and A X (B X C). From the definition it
follows that

(AX B) XC = {{{g,b),e)]| ({a,b) € A X B) A (c€ C)}
= {{a,b,¢c)| (ac A) A(be B) A (ce CO)} (1)

The last step follows from our definition of the ordered triple given in See. 2-1.8.
Next,

AX(BXC) = {{a (be))|(ac A) A ((bc) € BXC)}

Here {(a, (b, ¢)) is not an ordered triple. If we consider (A4 X B) X C as an or-
dered pair, then the first member is an ordered pair and the second member is
an element of C. On the other hand, A X (B X C) is an ordered pair in which
the first member is an element of A while the second member is an ordered pair.

This fact shows that
(AXB)XC#AX(BXC(C)

Before defining the eartesian product of any finite number of sets, we shall
show that the cartesian product satisfies the following distributive properties.
For any three sets A, B, and C

AX (BUC) = (AXB)u(4d XC)
A X (BnC) = (AXB)n(4XC) (2)

We now prove the first of these two identities.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

132 SET THEORY

2-2.4 Pointers and Linked Allocation

The previous section discussed at some length how the address of an element in
a data structure could be obtained by direct computation. The data structures
discussed were linearly ordered, and this ordering relation was specified in the
corresponding storage structures by using sequential allocation. There was no
need for an element to specify where the next element would be found.

Consider a list consisting of elements which individually vary in size. The
task of directly computing the address of a particular element becomes much
more difficult. An obvious method of obtaining the address of a node (element)
is to store it in the computer memory. This address was previously defined as a
link or pointer address. If the list in question has n nodes, we ean store the address
of each node in a vector consisting of n elements. The first element of the vector
will contain the address of the first node of the list, the second element the address
of the second node, and so on.

There are many applications which, by their very nature, have data which
are continually being updated (additions, deletions, etc.). Each time a change
occurs, significant manipulation of the data is required. The representation of
the data by sequentially allocated lists in some of these cases results in an in-
efficient use of memory and wasted computational time, and, indeed, for certain
problems this method of allocation is totally unaeceptable.

The interpretation of a pointer as an address is a natural one. Most com-
puters use addresses to find the next instruction to be executed and its operand(s).
In many hardware configurations special registers are used to store such ad-
dresses.

A pointer can be regarded as a general type of structure because when a
pointer to a data structure is given, then its contents become acecessible. Pointers
are always of the same length (usually no longer than a half-word), and this
property enables the manipulation of pointers to be performed in a uniform
manner by using simple allocation techniques regardless of the configurations
of the structures they may point to. .

In the sequential-allocation method one is able to compute an address of
an element provided that the storage structure is organized in some uniform
manner. Pointers permit the referencing of struetures in a uniform way regard-
less of the organization of the structure being referenced. Pointers are capable of
representing a much more complex relationship between elements of a structure
than a linear order.

The use of pointers or links to refer to elements of a data structure (which
18 linearly ordered) implies that elements which are adjacent because of the linear
ordering need not be physically adjacent in memory. This type of allocation
scheme 1s called linked allocation. We now turn to the problem of representing
structures by this type of allocation,

A plex has been defined to consist of an ordered set of elements which may
vary in number. The previous subsection was concerned with representation of
the relationship of adjacency between elements in a plex. There are many other
structures that can be represented by a plex where the relationships that exist
between elements are much more complex than that of adjacency.

The simplest form that can be used to represent a linear plex is to expand

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

136 SET THEORY

a number of subprograms which are written in the FORTRAN language. We
will make use of the PL/I language to represent certain common operations
performed on lists.

There are a number of classes of operations which are associated with
linked lists. The first class of such operations is independent of the data con-
tained in the nodes of a list. These operations include the insertion, deletion,
and selection of nodes. Programming languages which possess list processing
capabilities usually have these operations built in.

Another class of operations associated with list structures is the operation
which converts the raw data from a human-readable form to a corresponding
machine form. The inverse operation of converting an internal structure to a
suitable human-readable form is also required. These operations are clearly data-
dependent, and attention must be given to the interpretation that is associated
with the structures. List processing languages will have some standard basie
routines for such operations, but any additional routines must be programmed.

Finally, there are operations that must be programmed to manipulate the
data according to what is required in a particular application at hand. In the
case of polynomial manipulation, for example, such operations would include
the addition, subtraction, multiplieation, division, differentiation, and integra-
tion of polynomials. Once a programmer has aceess to all the routines for the
three classes mentioned above, the task of programming an algorithm is much
simpler.

~ Let us consider the problem of deseribing singly linked linear list repre-
sentations and operations in an algoritbmic notation and also in the PL/I lan-
guage. A node consists of a number of fields, each of which can represent an in-
teger, a real number, ete., except for one field (usually the last for purposes of
illustration), called a pointer, which eontains the location of the next node in
the list. This location is specified as a computer memory address.

Consider the example of representing a term of a polynomial in the variables
x and y. A typieal node will be represented as

XEXP | YEXP | COEF | LINK

which consists of four sequentially allocated fields that we will collectively refer
to as TERM. The first two fields represent the power of the variables z and y
respectively. The third and fourth fields represent the coefficient of the term
in the polynomial and the address of the next term in the polynomial, respee-
tively. For example, the term 3zy®* would be represented as

112113 | =t——

The seleetion of a particular field within a node for the example of our poly-
nomial is an easy matter. Our algorithmic notation will allow the referencing of
any field of a node, given the pointer P to that node. COEF (P) denotes the co-
efficient field of a node pointed to by P. Similarly, the exponents of x and y are
given by XEXP(P) and YEXP(P) respectively, and the pointer to the next
node is given by LINK(P).

—-—

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

140 SET THEORY

PALYST:
PROCEDURE DPTIONSIMAIND;
FRCONSTRUCT A LINKED LIST REPRESENTATIUN JF A POLYNOMIAL USING
THE INSERT PROCFDURE, =/
DECLARE
1 TER™ RASFDIP),
2 XFXEP RINARY FIXED,
2 YFXP BINARY FLXED.,
2 CNEF AINARY FLOAT,
2 LINK POINTFR,
g onIvTER,
POLY PN NTER,
INSERYT ENTAYIAIN FIKED,dIN FIXED,BIN FLDAT,PTR) RETURNS{PTR}:

POALY = NULL: /= TMITTIALILZE =/

PALY = INSERTIO.2,1,POLYI; /% INSERT LASY TERM OF POLYNNMIAL &/
PILY = INSFRTIL1,1,3,POLY); /% INSERT SECOND TERM OF POLYNOMIAL o/
POLY = INSERTU(Z+0.1+POLY); /* INSERT FIRST TER™ OF POLYNDMIAL 7

END POLYSTS
FIGURE 2-2.5 Construction of the polynomial z* 4 3zy + %

is given by variable X. Auxiliary pointer variables NEXT and PRED are used
The list is composed of nodes with structure previously described as TERM.

1 [Empty list?] If FIRST = NULL then write “underflow’ and Exit.

2 [Delete first node?] If X = FIRST then set FIRST « LINK(FIRST)
and go to step 8.

3 [Initiate search for predecessor of X.] Set NEXT « FIRST.

4 [Update pointers.] Set PRED «— NEXT and NEXT « LINK(NEXT).

5 [End of list?] If NEXT = NULL then write 'node not found’ and
Exit.

6 [Is this node X?] If NEXT # X then go to step 4.

7 [Delete X.] Set LINK(PRED) « LINK(X).

8 [Return node X.] Restore node X to the availability area and Exit.

The first step in the algorithm checks for an underflow. The second step
determines whether the node to be deleted i1s the first node of the list, and if it
is, then the second node of the list becomes the new first node. In the case of a list
containing a single node, the pointer variable FIRST will assume the null value
as a result of the deletion.

Fﬂlﬂ'—*ﬂ'l IM FDL"I'—""III|3 l FﬂL?-“!ﬂl
D‘leﬂ 111] 3
T

FIGURE 2-2.6 Trace of the construction of a linked list for polynomial
z* + 3zy + A

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

144 SET THEORY

the predicate
z 18 a commerce student.

We can find the extension set of the predicate
z 18 a male commerce student.

by finding the intersection of the two preeeding extension sets. This is done by
performing the logieal operation

SEX_FILE(1)&COLLEGE_FILE(2)

BITSETS:

PROCEDURE QPTIONS (MAIN):

F*THIS PROGRAM TNPUTS CODED INFORMATION ABOUT STUDENTS, CREATING &
MASTER FILE AND THREE BIT STRING ARRAYS. THE MASTER FILFE CONSISTS OF
AN ARRAY OF STRUCTURES MNAMED STUDENT. EACH ELEMENT OF THIS ARRAY
HAS FOUR FIELDS MAMED AND CONTAINING CNDES AS FNLLOWS:

NUMBER - & SIX DIGIT STUDENT NUMBER
SE X - 1 - HMALE

- FEMALE

ARTS AND SCIENCE

COMMERCE

ENGINEER ING

GRADUATE STUDIES

HOME ECONOMICS

AGRICULTURE

~ SINGLE

~ MARRIED

= OTHER
FOR THE FIELDS SEX, COLLEGE, AND MARITAL_STATUS, THE ARRAYS SEX_FILE,
COLLEGE_FILE, AND STATUS_FILE ARE ESTAALISHED AS REPRESENTATIONS OF
MUTUALLY EXCLUSIVE SUBSETS OF THE MASTER FILE. THE ELEMENTS OF THESE
ARRAYS ARE BIT STRINGS HAVING A LENGTH EQUAL TO THE MUMRER OF RECORNDS
IM THE MASTER FILFE., THERE ARE A TOTAL OF 11 81T STRINGS., ONE FNR
EACH OF THE ABROVE CODES. FEACH STRING INITIALLY CONSISTS ENTIRELY OF
o' BITS.

THE FIRST PART COF THE MAIN PROGRAM INPUTS THE STUDENT FILE AND
CONSTRUCTS THE BIT REPRESENTED SETS AS FOLLOWS: FOR THE ITH RECORD,
1F THE CODES Js Ky AND ¥ ARE IN THE FIELDS SEX, COLLEGE, AND MARITAL_
STATUS RESPECTIVELY, THEN THE ITH BIT DF BIT STRINGS SEX_FILS{J),
COLLEGE_FILEILX), AND STATUS_FILE(M) ARE SET Tn "]'g,
BEGINNING AT THE LABEL QUERY, A NUMBER OF EXTENSION SETS OF CERTAIN
PREDICATES ARE PRINTED JSING PROCEDURE OUTPUT, THE FI2ST INVOCATION
PRINTS EVERY RECORD AMD THE NEXT FIVE PRINT CERTAIN SURBSETS OF THE
MASTER FILE. THE USE OF LOGICAL CONNECTIVES IN FINDING
INTERSECT IONS, UMIONS, NR COMPLEMENTATIONS OF EXTENSION SETS 1S
DEMONSTRATED. .y
GET LISTIND;
BEGIN; /% AUTOMATIC STORAGE ALLOCATION =/
DECLARE
1 STUDENTIN),
2 NUMBER FIXED(&),
2 SEX FIXED(1l),
2 COLLEGE FIXEDI{1),
2 MARITAL_STATUS FIXEDIL),

ISEX_FILEL2)COLLEGE_FILE(O) STATUS_FILE(3)) BIT(N])
INITIALL(L10(1) 02},

SEX_WORDI2) CHAR{10) INITIAL(*MALE',*FEMALE"},

COLLEGE_WORDI(&) CHAR{20) INITIAL{'ARTS AND SCIFNCE', "COMMERCE",
"ENGINEERING', "GRADUATE STUDIES","HOME ECONOMICS',
"AGRICULTURE"),

STATUS_WORDI(3) CHAR{T7) TNITIAL(*SINGLE"Y,"MARRIED", "OTHE®R"},

I BINARY FIXED,

HEADINGS CHAR(54) INITIAL
{ *NUMBER SEX COLLEGE MARTTAL STATUSY):

FIGURE 2-2.8 PL/I program. applying bit represented sets.

COLLEGE

P
Wk = Ooun W R R e e

MAR ITAL_STATUS

L I |

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

148 SET THEORY

and the pointer variable BEGIN is to denote the first node. The variables INFO
and FIELD represent the information content of a node, while LINK and PTR are
variables containing the address of the next node. Give the name COPY to the al-
goitthm.

10 Buppose that you are given a simple linked list whose first node is denoted by the
pointer variable FIRST and whose typical node is represented by

XKEY | LINK

where the variables KEY and LINK represent the information and link fields of the
node, respectively. The list is ordered on the field KEY such that the first and last
nodes eontain the smallest and largest values of the field. It is desired to delete a
number of consecutive nodes whose K EY values are greater than or equal to KMIN
and less than KM AX. For example, an initial list with KMIN and KM AX having
values of 25 and 40, respectively, could look like this:

0] ——| 25 | —+—| 20 | ——| 37 | ——| 40 | —}—| 50

T
FIRST

After deleting the designated nodes, the updated list would reduce to the following:

100 | ——a; 4{) »| Bl

;

FIRST

In this example, we dropped the nodes whose KEY field values are 25, 29, and 37.
Formulate an algorithm and write a program which will aceomplish the deletion
operation for an arbitrary linked list.

2-3 RELATIONS AND ORDERING

The concept of a relation i1s a basie concept in everyday life as well as in mathe-
matics. We have already used various relations. Associated with a relation is the
act of comparing objeets which are related to one another. The ability of a com-
puter to perform different tasks based upon the result of a comparison 1s one of
its most important attributes which is used several times during the execution
of a typieal program. In this section we first formalize the concept of a relation
and then discuss methods of representing a relation by using a matrix or its
graph. The relation matrix is useful in determining the properties of a relation
and also in representing a relation on a computer. Various basic properties of
relations are given, and certain important classes of relations are introduced.
Among these, the compatibility relation and the equivalence relation have useful
applications in the design of digital computers and other sequential machines.
Partial ordering and its assoeiated terminology are introduced next. The material
in Chap. 4 is based upon these notions. Several relations given as examples in
this section are used throughout the book. Algorithms to determine certain prop-
erties of relations are also given.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

152 SET THEORY

member of each of the following sets:

Ri=RinRan R,

=z,)| @y ERXRAzkyZIAZ2+ P <IN <z}
Ry = Ban (B UR;) N~(Ry N Ry)

=z,]| @ e RXRAZ2H+ P <IA(zky21V ¥ <z

A~Exyz21Ay<z))
Ru - RanREHR;-

=@ @Y EERXRAZRYZIA~Z RS9 A Y <z
R1=~(R1UR::IHR2
= {{r,) | B y) E RXRA~(zkyZ21VyE<z) A2+ 2 <9

R, includes all points lying within the circle and the parabola and above the
hyperbola of the first quadrant. K; includes all points within the cirele which lie
either within the parabola or above the hyperbola of the first quadrant, but not
both, and all points within the circle and below the hyperbola in the third quad-
rant. Bs includes all points lying above the hyperbola and within the parabola
in the first quadrant. B; includes all points lying within the cirele and between
the hyperbolic curves but not within the parabola.

These newly defined sets can pictorially be represented as shown in Fig.
2-3.2. The program given in Fig. 2-3.3 reads a number of coordinate points and
determines whether these peints lie in the sets Ry to R;. Note that the rela-
tions K, to Ry are written as predicates P; to Py in the program.

FIGURE 2-3.2

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

156 SET THEORY

show that R is not transitive. Find a relation B, 2O R such that R, is transitive. Can
yvou find another relation R: 22 R which 1s also transitive?
7 Given 8= 11,2, ..., 10} and a relation B on S where

R= [{e,)| 2+ y = 10}

what are the properties of the relation R?

8 Let R be a relation on the set of positive real numbers so that its graphical repre-
sentation consists of points in the first quadrant of the cartesian plane. What can we
expect if R is (a) reflexive, (b) symmetric, and (¢) transitive?

9 Show that the relations L and D given in Problem 3 of Exercises 2-3.1 are both re-
flexive, antisymmetric, and transitive. Give another example of such a relation. Draw
the graphs of these relations as defined in Seec. 2-3.3.

2-3.3 Relation Matrix and the Graph of a Relation

A relation R from a finite set X to a finite set } can also be represented by a
matrix called the relation matriz of R.
Let X = [z, 29, ..., Zwl, ¥ = {in, ya, ..., ¥}, and K be a relation from
X to Y. The relation matrix of & can be obtained by first construecting a table
whose columns are preceded by a column consisting of successive elements of
X and whose rows are headed by a row eonsisting of the successive clements of
Y. If x; R y;, then we enter a 1 in the 7th row and jth eolumn. If z; B z,, then we
enter a zero in the kth row and Ith ecolumn. As a speecial case, consider m = 3,
n = 2, and R given by
R = {(x,), (@2,), (X3, o), (Xo, Y27} (1)

The required table for R is Table 2-3.1.

If we assume that the elements of X and Y appear in a certain order, then
the relation K can be represented by a matrix whose elements are 1s and Os.
This matrix can be written down from the table constructed or can be defined
in the following manner.

I if x; By,
Yif =

ﬂ ifI-‘&yJ

v here r;; is the element in the 7th row and jth eolumn. The matrix obtained in
this way is called the relation matrix. If X has m elements and } has n elements,

then the relation matrix is an m X n matrix. For the relation £ given in Eq. (1),
the relation matrix is

1 0
1 1
0 1_
Table 2-3.1
o I

X 1 0

I3 1 1

b | 0 1

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

160 SET THEORY

¥ ; Xy
X3
(h)
X
'I:". 'rj
() (o)

FIGURE 2-3.8

representations of the relation become unwieldy. In these cases, however, the
matrix representation can be easily represented on a computer. When a relation
matrix is available, it is easy to determine whether a given relation is reflexive
or symmetric. It is not always easy to determine from the matrix whether the
relation is transitive. We now present two algorithms. The first determines from
a relation matrix whether the relation is reflexive and symmetric. The second
algorithm then determines whether the relation is also transit*ve. Relations
which are reflexive, symmetric, and transitive are called ejuivalence relations.
Equivalence relations are discussed in See. 2-3.5.

The entries of the relation matrix are denoted by T and F instead of 1 and
0 in order to conserve storage. Note that in FORTRAN only 1 byte is needed
for each logical entry, but at least 2 bytes are required for an integer entry.

Algorithm REFSYM Given a relation matrix R representing a relation in the
set of positive integers from 1 to n inclusive, it is required to determine if the
relation represented by K is symmetric and reflexive. If it is, the variable FLAG
which is initially false 1s given the truth value true; otherwise FLAG remains

false.

1 [Secan each row.] Repeat steps2and 3fori =1,2,...,n.

2 [Reflexive?] If R {4, i] = F then Exit.

3 [Symmetric?] Repeat for j =1 + 1,7 + 2, ..., n:
If R{t j]=2R[j,i] = F then Exit.

4 [Successful test.] Set FLAG « T and Exit.

This algorithm scans each row of the matrix from the diagonal element to
the right. If a diagonal element has the truth value F, then the algorithm is
terminated in step 2 with FLAG remaining false. Step 3 scans each row in the

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

164 SET THEORY

Let A, B, and C be three subsets of £ and let the 2* minterms, denoted by
Io, Iy, ..., I7 (see Fig. 2-3.11¢), be as follows:

I = ~An~Bn~C L=~An~BnC

I =~AnBn~C Iy =~AnBnC
I;‘—‘AHNBHNC I;=AI'I~BI'IC
Is=AnBn~C Ir=AnBnC

The subscript of I shows indirectly the minterm under consideration. In order to
obtain the minterm, first we write the subseript as a binary integer containing
three digits (since there are three subsets under consideration). The appearance
of 1 or 0 in the first position on the left indicates the presence of A or ~A, re-
spectively. This relation also holds for the second and third positions. The
notation is similar to the one used in Secs. 1-3.5 and 2-1.3. For example, I =
A n~BnC since 5 written as a binary integer is 101.

In general, if Ay, As, ..., A, are any n subsets of the universal set F, then
the complete intersections or minterms generated by these n subsets are denoted

by Iy, 11, ..., I:*_; (see Sec. 2-1.3). These are mutually disjoint and are such
that
a™_1
E o U I,‘

()
One can recognize a similarity between the minterms defined here and those

given in the statement caleulus. We shall return to a general discussion of this
in Chap. 4.

EXERCISES 2-3.4

1 Define a well-formed formula of set theory in the same manner as in the definition
given in Sec. 1-2.7, using the operators N, U, and ~ only.

2 Show that for any formula in set theory involving set variables A and B and the opera-
tions N, U, and ~, one can obtain another formula which is equal to the given formula
and which contains the union of minterms only.

3 Bhow that the set of operations [U, ~} is functionally complete for formulas in set
theory (Hint: Follow the same procedure used in Sec. 1-2.13).

4 Write the duals of minterms and discuss some of their important properties.

2-3.5 Equivalence Relations

Definition 2-3.9 A relation R in a set X is called an equivalence relation
if 1t 1s reflexive, symmetnie, and transitive.

If R is an equivalence relation in a set X, then D(R), the domain of R, is
X itself. Therefore B will be called a relation on X. The following are some ex-
amples of equivalence relations.

1 Equality of numbers on a set of real numbers
2 Equality of subsets of a universal set

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

168 SET THEORY

there is a set Cy + (' such that x € Cy; also x does not belong to any other ele-
ment of C. We now take all the elements of €y X 'y as members of a relation E.
Thus every element of X that 1s in) 18 an RH-relative of every other member
of Cy. Furthermore, no other member of X which isnot in C;1s related to the ele-
ments of (. Similarly, for every other member of the partition C, we form mem-
bers of the relation R. If € = |Cy, Cs, Cy, ..., Cx}, then B = (C; X C,) U
(Co X Ca) U -+ U (Cm X Cun). It iz casy to see that B is an equivalence relation.
Thus for every partition ' we can define an equivalenee relation.

EXAMPLE 5 Let X = {a, b,¢,d, e} and let O = }la, b}, {c}, {d, e} }|. Show
that the partition ' defines an equivalence relation on X.

SOLUTION

R = {{a,a)}, b, b), {a, b), (b, a), (c,c), {d,d), (e e), {d, e}, {e d}} 1117

It has been shown that an equivalence relation on a set generates a parti-
tion of the set, and conversely. It may happen that two relations, which may have
been defined 1n different ways, generate the same partition. Since a relation 18 a
set, any two relations consisting of equal sets are indistinguishable for our pur-
pose. This statement will be true of every partition of the set as well. The follow-
ing serves as an illustration.

let X = 11,2, ..., 9% and By = {(x, y)jzec X Ay X A (r — ¥)
1s divisible by 3. Further, let

R:= [{x,y)|xzc X Ay Xandz,yareinsame column of matrix A}

where 1 2 3]
A=}4 5 6

| 7 8 9

Although E, and K2 have been defined differently, £, = R..

In See. 2-3.3 we have already given algorithms to determine whether a
given relation £ on a set 1s an equivalence relation. Onee it is determined, our
next task is to obtain the equivalence classes. Before giving an algorithm for
this purpose, let us discuss the technique that will be used for the representation
of the equivalence classes in the algorithm.

Given a set |1, 2, ..., n} and an equivalence relation & on it, the equiv-
alence classes can be represented by means of two vectors, each having » ele-
ments. These vectors are called FIRST and MEMBER. The ith component of
FIRST for 1 < ¢ < n contains the number which is the first element in the
equivalence class to which ¢ belongs. The ith component of MEMBER contains
the number which follows ¢ in the equivalence class, unless ¢ is the last element,
in which ease MEMEBER[1] 15 equal to zero.

As an example, let the set be {1, 2, 3, 4, 5, 6} and the equivalence classes
be |1, 3, C, {21, and {4, 5]. The vectors FIRST and MEMBER representing
these equivalence classes are shown in Fig. 2-3.14,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

172 SET THEORY

RELATION MATRIX

THE RELATION 15 AN EQUIVALENCE RELATION,

FQUIVALENCE CLASSES

1 2 8
3
4 & T
S
9
10
FIRST 1 1 3 4 5 4 . 1 9 10
MEMBER 2 8 0 b 0 T 0 0 0 V]

FIGURE 2-3.16b.

Then R is a compatibility relation, and x, y are called compatible if z R y. A
compatibility relation is sometimes denoted by =. Note that ball =~ bed,
bed = egg, but ball 5 egg. Thus & isnot transitive. Denoting “‘ball” by z;, “bed”
by zs, “dog” by s, “let” by z, and “egg’ by x5, the graph of = is given in ¥ig.
2-3.17a.

Since = is a compatibility relation, it 1s not necessary to draw the loops
at each element nor is it necessary to draw both z R y and y K x. Thus we can
simplify the graph of &, as shown in Fig. 2-3.17b. Note that the elements in each
of the sets |z, 12, x4} and {z., 7;, 23] are related to each other, i.e., the elements
are mutually compatible. Further, these two sets define a covering of X. The
set |xs, x4, x5} also has elements compatible to each other.

The relation matrix of a compatibility relation is symmetrie and has its
diagonal elements unity. It is, therefore, sufficient to give only the elements of
the lower triangular part of the relation matrix in such a case. For the compati-

bility relation we have heen discussing, the relation matrix can be obtained from
Table 2-3.2.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

176 SET THEORY

2-3.7 Composition of Binary Relations

Since a binary relation is a set of ordered pairs, the usual operations such as union,
intersection, etc., on these sets produce other relations. This topic was discussed
in Sec. 2-3.1. We shall now consider another operation on relations—relations
which are formed in two or more stages. Familiar examples of such relations are
the relation of being a nephew or a brother’s or sister’s son, the relation of an
uncle or a father’s or mother’s brother, and the relation of being a grandfather
which 1s a father’s or mother’s father. These relations can be produced in the
following manner.

Definition 2-3.13 Let R be a relation from X to ¥ and S be a relation

from Y to Z. Then a relation written as K * S is called a composite relation
of B and S where

ReS={(a)|ec XAzcZA(WPwe YA, y)e RA (y,2) € 8]

The operation of obtaining R = S from R and 8 is called composition of
relations.

Note that R = Sis empty if the intersection of the range of K and the domain
of S is empty. B ¢ S is nonempty if there is at least one ordered pair (x, y) ¢ R
such that the seecond member y € V of the ordered pair is a first member in an
ordered pair in §. For the relation R < S, the domain is a subset of X and the
range i a subset of Z. In faet, the domain 1s a subset of the domain of B, and
its range is a subset of the range of S. From the graphs of B and S one can easily

construet the graph of R < 8. As an example, see Fig. 2-3.21.
¥y C\
X5 Q 1z,
*y Oz,
x, O 2y
xg z4
ol

FIGURE 2-3.21 HRelations R, S, and K= 8.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

180 SET THEORY

SOLUTION

Mg=|0 1 1 |= transpose of Mg

My = = transpose of Mg

Mges=|1 0 1 1 1 Mpas=|0 1 1

Mzeg=(0 1 1/|= Mgss

0 1 1 /117

We shall leave the proofs as exercises.
Let us now consider some distinet relations R;, K., R;, K: in a set

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

184 SET THEORY

It is easy to write the elements of the relation €. Note that {a} and {b, ¢}, {a, b}

and |a, ¢}, ete., are incomparable.
3 Divides and Inlegral Multiple: If a and b are positive integers, then we

say ‘“‘a divides b,” written a | b, iff there is an integer ¢ such that ac = b. Alter-
natively, we say that “b is an integral multiple of a.”” The relation “divides” is
a partial order relation. Let X be the set of positive integers* The relations “di-
vides" and “integral multiple of’’ are partial orderings on X, and each is the con-

verse of the other.
As a special case, let X = [2, 3, 6, 8} and let < be the relation “divides”

on X. Then
< = 1(2,2), 3, 3), (6,6), (8 8), (2,8), 2, 6), 3,6}
The relation “integral multiple of,”’ written as >, is given by
2 = {(2,2), (3, 3), (6,6), (8,8), (8, 2), (6,2), (6, 3)]
4 Lericographic Ordering: A useful example of simple or total ordering

is the lexicographic ordering. We shall define it for certain ordered pairs first

and then generalize it.
Let R be the set of real numbers and let PP = R X R. The relation > on R

is assumed to be the usual relation of “greater than or equal to.” For any two
ordered pairs (x1, y1) and {2z, y2) in P, we define the total ordering relation S as

follows:
(o) S @) e (> x) V ((o=2) Alin 2 4)

It is clear that if (x;, 1) & (&2, ¥2), then we must have (rs, y2) S (&1, 1), so that
S is a total ordering on P. The partial ordering S is called the lexicographic order-
ing. The significance of the terminology will become clear after we generalize
the above ordering relation. The following are some of the ordered pairs of P

which are S-related:
2,28 (2, 1)

3,1)8 (1, 5)
(Z; 2812, 2
3,2)8 (0, 1)

We now generalize this coneept. Ior this purpose, let R be a total ordering
relation on a set X and let

P=XUVX*UXW---UuX"=UJX" (n=123,...)

This equation means that the set P consists of strings of elements of X of length
less than or equal to n. We may assume some fixed value of n. A string of length
p may be considered as an ordered p-tuple. We now define a total ordering S on

P called lexicographic ordering. For this purpose, let (ui, us, ..., u,) and
(v, 2, ..., ¥g), with p < g, be any two clements of P. Note that before start-

ing, to compare two strings to determine the ordering in P, the strings are inter-
changed if necessary so that p < ¢. Now

{“h Ua, ---IHF}S {uh Vg, - **:ﬂu}

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

188 SET THEORY

EXAMPLE 2 Let A be a given finite set and p(A) 1ts power set. Let € be the
inclusion relation on the elements of p(A). Draw Hasse diagrams of (p(A), ©)
for (@) A = {a}; (b) A = [a,b};(e) A = {a,b,e}; (d) A = |a, b, ¢, d].

soLUTION The required Hasse diagrams are given in Iig. 2-3.25a to d.

/11

The following points may be noted about Hasse diagrams in general. For
a given partially ordered set, a Hasse diagram is not unique, as can be scen from
Fig. 2-3.25b. From a Hasse diagram of (P, <), the Hasse diagram of (P, >),
which is the dual of (P, <}, can be obtained by rotating the diagram through
180° so that the points at the top become the points at the bottom. Some Hasse
diagrams have a unique point which is above all the other points, and similarly
some Hasse diagrams have a unique point which is below all other points. Such
was the case for all the Hasse diagrams given in Example 2, while the Hasse
diagram given in Example 1 does not possess this property. The Hasse diagrams
become more complicated when the number of elements in the partially ordered
set 1s large,

(a) (F2)] i)

(d) ¢

FIGURE 2-3.25 Hasse diagrams of {(p(4), C).

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

192 SET THEORY

FIGURE 2-3.28 ¥4 X5

Give an example of a set X such that (p(X), C) is a totally ordered =et.

Give a relation which is both a partial ordering relation and an equivalence relation

on i set,

§ Let S denote the set of all the partial ordering relations on a set P. Define a partial
ordering relation on & and mterpret this relation in terms of the elements of P,

6 Figure 2-3.28 gives the Hasse diagram of a partially ordered set (P, K), where P =
{21, 22, ..., 25}, Find which of the following are true: xry B xs, x4 B 1y, 23 B 15, r3 R 13,
r R ry, re B x3, and 24 R 5. Find the least and greatest members in P if they exist,
Also find the maximal and minimal elements of P. IFind the upper and lower bounds of
| To, 3, Xs), | 23,24,75), and {2y, 22,13} . Also indicate the LUB and GLB of these subsets
if they exist.

7 Show that there are only five distinet Hasse digrams for partially ordered sets that

contain three elements,

e W

2-4 FUNCTIONS

In this section we study a particular elass of relations called funetions. We are
primarily cencerned with diserete funetions which transform a finite set into
another finite set. There are several such transformations involved in the com-
puter implementation of any program. Computer output ean be considered as
a function of the input. A compiler transforms a program into a set of machine
language instructions (the objeet program). After introducing the concept of
function in general, we discuss unary and binary operations which form a class
of functions. Such operations have important applications in the study of al-
gebraie structures in Chaps. 3 and 4. Also discussed is a speecial class of functions
known as hashing functions that are used in organizing files on a computer, along
with other techniques associated with such organizations. A PL/I program for
the construction of a symbol table is also given.

2-4.1 Definition and Introduction

Definition 2-4.1 Let X and V be any two sets. A relation f from X to ¥
is called a function if for every z € X there is a unique y « Y such that

(x,y) € f.

Note that the definition of funetion requires that a relation must satisfy
two additional conditions in order to qualify as a function. The first condition
is that every z ¢ X must be related to some y € Y, that is, the domain of f must

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3

ALGEBRAIC STRUCTURES

INTRODUCTION

In this chapter we shall first explain what is meant by an algebraic system and
then give several examples of familiar algebraic systems and discuss some of their
properties. These examples show that different algebraic systems may have
several properties in ecommon. This observation provides a motivation for the
study of abstract algebraic systems. For such algebraic systems, certain proper-
ties are taken as axioms of the system. Any result that is valid for an abstract
system holds for all those algebraic systems for which the axioms are true.

Throughout the chapter we shall introduce certain important and useful
concepts associated with algebraic systems. For example, the concept of iso-
morphism shows that two algebraic systems which are isomorphie to one another
are structurally indistinguishable and that the results of operations in one system
can be obtained from those of the other by simply relabelirig the names of the
elements and symbols for operations. This concept has useful applications in the
sense that the results of one system permit an identical interprciation in the
other system. Another important conecept is that of a congruence relation which
has a useful property known as substitution.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

r-‘- Il

31 ALGEBRAIC SYSTEMS: EXAMPLES AND GENERAL FROPERTIEE 277

with any one system will also be true for the other system after the labels are
changed. We shall now formalize these ideas for any two algebraic systems.

Definition 3-1.1 Let (X, <) and (Y, %) be two algebraic systems of the
same type in the sense that both ¢ and * are binary (n-ary) operations.
A mapping g: X — Y is called a homomorphism, or simply morphism, from
(X, =Yto (Y, k)ifforany z;, 2. € X

gz ° 22) = g(11) %k 9(22) (2)

If sueh a function g exists, then it is customary to call (¥, %) a homo-
morphic image of (X, <), although we must note that ¢(X) C V.

The concept of homomorphism is not restricted to algebraic systems with
one binary operation. One can extend this definition to any two algebraic systems
of the same type. Since in a homomorphism the operations are preserved, we
shall see that several properties of the operations are also preserved.

For the algebraic systems (F, ¢) and (Z;, 4+4), the mapping ¢: F - Z,
given by Eq. (1) is a homomorphism. Any mapping which satisfies the condi-
tion given by Eq. (2) is a homomorphism. In the example of the algebraic systems
(I,) and {Zi, +4), the mapping is bijective, which is a special case of homo-
morphism as can be seen from Definition 3-1.2 which follows. It is possible to
have more than one homomorphie mapping from one algebraie system to another.

Definition 3-1.2 Let ¢ be a homomorphism from (X, <) to (¥, %). If
g: X — Y is onto, then g is called an epimorphism. If g: X — Y is one-to-one,
then g is called a monomorphism. If g: X — Y 18 one-to-one onto, then ¢
1s called an isomorphism.

Definition 3-1.3 Let (X, °) and (Y, %) be two algebraic systems of the
same type. If there exists an isomorphic mapping g: X — Y, then (X, =)
and (Y, %) are said to be isomorphic.

In the case when (X, <) and (Y, %) are isomorphie, then the two algebraic
systems are structurally indistinguishable in the sense that they differ only in
the labels used to denote the elements of the sets and the operations involved.
It is easy to see that the inverse of an isomorphism is also an isomorphism. Also

all the properties of the operations are preserved in an isomorphism.

Definition 3-1.4 Let (X,) and (Y, %) be two algebraic systems such
that ¥ € X. A homomorphism ¢ from (X,) to (¥, %) in such a case is
called an endomorphism. If ¥ = X, then an isomorphism from (X, °) to
(Y, %) is called an automorphism.

EXAMPLE 5 Show that the algebraic systems of (F, =) and (Z,, +4) given in
Examples 3 and 4 are isomorphic.

goLUTION The mapping ¢: F — Z, defined by Eq. (1) is one-to-one onto
and is a homomorphism; hence ¢ 18 an isomorphism. 11

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3-2 SEMIGROUPS AND MoONOIDS 287

3-2.2 Homomorphism of Semigroups and Monoids

The concept of homomorphism for algebraic systems was introduced in See.
3-1.2. Now we apply this concept to semigroups and monoids. Homomorphisms
of semigroups and monolds have useful applications in the economical design
of sequential machines and in formal languages.

Definition 3-2.3 Let (S, %k) and (T, A) be any two semigroups. A map-
ping g: S — T such that for any two elements a, b € S,

glax b) = gla) Ag(b) (1)

18 called a semigroup homomorphism.

As before, a semigroup homomorphism 1s ealled a semigroup monomor-
phism, epimorphism, or isomorphism depending on whether the mapping 18 one-
to-one, onto, or one-to-one onto respectively. Two semigroups (S, %} and
(T, A) are said to be isomorphie if there exists a semigroup isomorphic mapping
from Sto T.

We have already seen in Example 8, See. 3-1.2, that there exists a semigroup
homomorphism ¢ from (N, +) to (Z., +.) in which the identity of (N, +) is
mapped into the identity [0] of (Zm, +m).

Let us now examine some of the implications of Eq. (1). For this purpose,
let us assume that (S, *) is a semigroup and {7, A) is an algebraie structure of
the same type, that is, A 1s a binary operation on T but 1t 1s not necessarily as-
sociative. If there exists an onto mapping g: S — T such that for any a, b ¢ S
Eq. (1) is satisfied, then we can show that A must be associative and hence (T, A)
must be a semigroup. In order to see this, let a, b, ¢ € S

g(laxb) ke¢) =glaxb) Agle)
= (g{a) Ag(b)) A (g(e})
On the other hand,

glak (bxc)) =g((axb) *kc)

but g(a * (b % ¢)) can be shown to be equal to g(a) A (¢(b) A g(c)) by a simi-
lar argument. Henee A is associative, and (7T, A) must be a semigroup. This re-
sult shows that Eq. (1) preserves the semigroup character because it preserves
assoclativity.

Next, note that if g is a semigroup homomorphism from (S, %) to (T, A),
then for any element a € S which 1s idempotent, we must have g(a) idempotent,
because

gla k a) = gla) = gla) Agla)

The property of idempotency is preserved under the semigroup homomorphism.
In a similar manner commutativity is also preserved.

If (S, %) is a semigroup with an identity e, that is, (S, %, e) is a monoid
and g is a homomorphism from (S, >) to a semigroup (T, A), then foranya € §,

gla Xk e) = gle ka) = g(a) Ag(e) = g(e) Ag(a) = g(a)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3-5 cGrRoUPz 333

cording to Theorem 3-5.1. Equation (4) ean be written as
f(a %k b) = f(a) ©f(b)
showing that f is an isomorphism. /11

Example 2 of Sec. 3-2.2 is an illustration of the representation theorem.
This representation theorem is also known as Cayley’s representation theorem.
It was proposed by Arthur Cayley in 1854. This theorem shows that the structure

of a group is determined solely by its composition table.

EXERCISES 3-5.2

! Find all the subgroups of (@) (Z3, +12); (8) (Zs, +5);: (¢) (2%, X7);and (d) (ZF;, Xu)*

2 Find the group of rigid rotations of a rectangle which is not & square, Show that this
is a subgroup of (Dy, ©) given in Table 3-5.7.

8 Find all the subgroups of S, generated by the permutations

(1 2 3 4) (1 2 3 4)

and
1 3 2 4 1 3 4 2
Show that the set of all elements a of a group (@, %) such that a % z = z % a for
every z € (& is a subgroup of G.
Show that if (G, %) is a eyelic group, then every subgroup of (G, %) must be cyclic.
Show that ({1, 4, 13, 16}, Xy7) is a subgroup of {Z;, Xu).

Let (G, %) be a group and a € G. Let f: G— G be given by f(z) = a % z % a™ for
every z € (. Prove that f is an isomorphism of G onto G.

-2y O -

& Show that the groups (G, %) and (8, A) given by the following table are isomorphic.
* o P A q1 1 Ja J4
th yi yi P G ¢ q ¢ q2
Px Pz ol Py P J2 G e ge T
P Pr Pu h P2 e 1 qe ds T4
P Py ™ Ps P 4 qz T 94 qs

3-5.3 Cosets and Lagrange's Theorem

From the definition of a subgroup it is clear that not every subset of a group is
a subgroup. The problem that we try to solve here is to find those subsets which
can qualify to become subgroups. An important relationship exists between the
subgroups and the group itself. This relationship is explained by a theorem known
as Lagrange’s theorem, which is proved in this section. This theorem has impor-
tant applications in the development of efficient group codes required in the
transmission of information. Such group codes are discussed in Sec. 3-8. Another
application of subgroups 18 in the construction of computer modules which per-
form group operations. Such modules are constructed by joining various sub-

group modules that do operations in subgroups. The application of these to
the design of fast adders is discussed in Sec. 3-7.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

S |

4-2 BOOLEAN ALGEBRA 399

ing identities:
(C-1) a%ka =0 (C-1) a®a =1
(C-2) 0'=1 (C-2)" 1"=0

(C-3) (a%kb)=d @b (C-3) (a@b) =a %
(See Definition 4-1.9 and Prob. 5, Exercises 4-1.5.)

5 There exists a partial ordering relation < on B such that

(P-1) a*% b= GLB {a, b} (P-1)) a @®b = LUB {a, b}
(P-2) a<beakb=ae=2a®@b=0>

(P3) a<beakbt=02b<doddb=1

(See Theorem 4-1.1 and Prob. 6, Exercises 4-1.5.)

As pointed out earlier, not all the identities given here are independent of
one another. These identities arose by looking at a Boolean algebra as a special
lattice. It is possible to define a Boolean algebra as an abstract algebraie system
satisfying certain properties which are independent of each other. In fact, even
the two binary operations * and @, the unary operation ’, and the two dis-
tinguished elements are not all independent. One can define a Boolean algebra
in terms of the operations * and ’ and a set of independent properties satisfied
by these operations. We shall not, however, concern ourselves with this approach.

EXAMPLE 1 Let B = {0, 1} be a set. The operations %, ®, and ' on B
are given by Table 4-2.1. The algebra (B, %, @, ’, 0, 1) satisfies all the prop-
erties listed here and is one of the simplest examples of a two-clement Beolean
algebra. A two-element Boolean algebra is the only Boolean algebra whose
diagram is a chain.,

EXAMPLE 2 Let S be a nonempty. set and p(.S) be its power set. The set
algebra {(p(S), n, U, ~, &, 8) is a Boolean algebra in which the complement of
any subset A C Si1s ~A = § — A, the relative complement of the set A. If S
has n elements, then p(S) has 2" elements and the diagram of the Boolean algebra
is an n cube. The partial ordering relation on p(S) corresponding to the opera-
tions N and U is the subset relation C. The diagrams for the Boolean algebra
{p(8), N, U) when S has 1, 2, and 3 elements are given in Fig. 4-2.1. If S is an
empty set, then p(S8) has only one element, viz., ¥, so that @& = 0 = 1, and
the eorresponding Boolean algebra is a degenerate Boolean algebra. We shall
consider nondegenerate Boolean algebras only.

Table 4-2.1
b S 0 1 @ 0 1 z 2
0 0 0 0 0 1 0 1
1 0 1 1 1 1 1 0

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4-4 REPRESENTATION AND MINIMIZATION OF BOOLEAN FUNCTIONS 423

FIGURE 4-4.7 x

on its inner surface in the same orientation. Similar remarks hold for higher-
order maps.

To this point we have discussed Karnaugh map structures, indicating what
form they take for funetions of different numbers of variables and describing
how they are to be interpreted. To represent a Boolean function by means of a
Karnaugh map, we select the Karnaugh map structure appropriate for that
function and place 0s and 1s in the cells according to whether the functional
value is 0 or 1 for the input combination associated with that cell. (Because one
half of the map is associated with a 1 input value for a variable and the other
half of the map with a 0 input value for that same variable, the input combina-
tions are mapped one-to-one onto the cells of the Karnaugh map structure. The
input combination serves as a sort of “address” for a cell within a Karnaugh map
structure.) The Karnaugh map for the Boolean functionf = z; « [22 + (25 - %4)]
is given in Fig. 4-4.8 (see also Fig. 4-4.5). Observe that only the funetional values
of 1 have been written in the appropriate cells; a blank cell is presumed to have
a 0 in it. Also, for convenience, the map of the function f has had each of its cells
labeled with the input combination to which 1t corresponds.

The last method for representing Boolean funetions is one that was pre-
viously encountered in Sec. 1-2.15, namely, circuit diagrams. This representation
does seem appropriate since Boolean functions can express the functioning of
circuits. Because a circuit diagram actually shows which eircuits are to be con-
nected to which other eircuits, it is oceasionally possible to make use of a circuit
diagram to eliminate unnecessary connectives and thus yield a simpler circuit.

XiXz
r

~—

00 m_i 11 1 10

00 1

01 1
X3Xa 4 X4
11 1

10 I 1

FIGURE 4-4.8 X3

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4-4 REPRESENTATION AND MINIMIZATION OF BOOLEAN FUNCTIONS 429

0o 1 4 5 9 11
10x] %
2 x00]
-
Ox0x:,.
FIGURE 4-4.13 Prime implicant EB 6—” ‘
chart for f = Y.(0, 1, 4, 5, 9, 11).

An alternate method for selecting a suitable minimum sum from the group
of prime implicants is to construet a prime-implicant chart which for this problem
is given in Fig. 4-4.13. The chart contains a number of columns, each of which
has & number at the top that corresponds to a minterm in the sum-of-products
form of the function. Each row corresponds to one of the prime implicants, as
identified by 1020, 2001, and 0x0z at the right. In each row we mark a cross
under each minterm contained in the prime implicant represented by that row.
Thus, in the example the first prime implicant 10z1 contains or covers minterms
11 and 9. The remainder of the chart is completed in a similar manner.

The first step in using the prime-implicant chart 18 to examine the columns
to see whether any column has exactly one cross in it. This is true for columns
0, 4, 5, and 11. We place cireles around each of the erosses which stand alone in
a column, and then we rule a line through all the crosses in each row containing
a circled cross. The significance of this maneuver is that the particular prime im-
plicant which has been marked is the only one which can cover the required
encircled minterm. However, since it also covers all other minterms designated
by a cross in the same row, no other prime implicants need be chosen to cover
these minterms. A single asterisk is placed at the end of each prime implicant
thus required. Such rows are called primary basis rows. In addition to covering
the minterms under which the crosses are circled, each primary basis row covers
other minterms where other erosses lie in that row. Thus row 020z in Fig. 4-4.13
covers not only minterms 0, 4, and 5 but also minterm 1.

We continue this process for the columns containing crosses which are in
the other primary basis row, and at the end we have covered all minterms. Hence
we have determined the minimum sum £,%; + z12s2.

A general method that can be used to generate automatically all the prime
implicants that cover a given set of minterms is the Quine-McCluskey algorithm.
First, the 0 cubes are used to generate all the possible 1 cubes; then these 1 cubes
are used to generate all possible 2 cubes; this process continues until the r cubes
are generated for some r such that there are no (r + 1) cubes. The cubes that
remain after the elimination of all cubes covered by higher-order cubes are the
prime implicants.

Consider the example of g = z;, + (22 + z3%:) which can be represented by
the standard sum 2 (10, 12, 13, 14, 15). Writing the minterms in cube form,
grouping them in order of inecreasing number of 1s in each 0 cube, and finally
. applying the Quine-McCluskey algorithm to this set of ordered cubes gives the
result shown in Fig. 4-4.14. The arrows in the diagram have been drawn and
labeled to indicate which cubes generated the higher-order cubes. Observe that

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

436 LATTICES AND BOOLEAN ALGEBRA

f
0 1 3 7 15 16 I8 19 23 3l
—H—¥ oo
X X W0x 1
K x x x0x11
K .K x xx111
x I 1001 x
x_ 100x0
—X x 0000
I
0 1 3 5 7 15 19 21 23 31
—E— X S
X X x0011
¥ X x0101
¥ ¥ 001x1
x 3% X% xxlll
XY Y—K L
FIGURE 4-4.20

will find all possible minimal covers of a set of 0 cubes, where minimal means that the
cover does not contain redundant cubes.

The first step that should be taken in your algorithm is to determine the es-
sential prime implicants. Then the problem reduces to finding the minimal covers
of nonessential prime implicants for cubes not yet covered. A brute-force solution
would be to test all combinations of nonessential prime implicants. There are other
solutions to this problem however.

4-5 DESIGN EXAMPLES USING BOOLEAN ALGEBRA

In this section we illustrate how Boolean algebra is used in the design of some
simple switching cireuits that perform various arithmetic operations on numbers.
We are concerned with fixed-length binary numbers, since in general most digital
computers manipulate binary numbers of fixed length.

Initially, we give a brief discussion of arithmetic operations that can be
performed on integral binary numbers. Let a = {a;, ag, ..., a,) and b = (b,
ba, ..., ba) denote two binary numbers. The binary addition table given in Table
4-5.1 1s simple. Note, however, that in the case of two 1s, a 2-digit sequence is

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

440 LATTICEE AND BOOLEAN ALGEBRA

5 00101 00101 -9 10110
+ —8 + —01001 + 10110 + =5 + 11010
-4 Change to 11011 —14 110000 — 10001
T
end-around carry,
no overflow
7 00111 -7 11000 -7 11000 11000
+ +9 + 01001 + -9 + 10110 — -9 — 10110 < 01001
16 10000 101110 2 Change to 100001 = 00010
T 1 !
overflow end-around carry end-around
but also overflow CATTY

Another form by which signed binary numbers ean be represented is the
28 complement representation. Again, numbers represented in this fashion have
all the bits (including the sign bit) taking part in the arnthmetie operation, and,
as in the case of 18 complement, subtraction is unnecessary. Addition of the
second operand in 2s complement form vields the same result as the subtraction
of the second operand from the first operand. There are no end-around carries.
The sign bit always comes out correct, except in the case of an overflow, for which
no correction is possible. Except for one case, overflows are detected by checking
the signs of the operands. If, when actually adding, the two operands have the
same sign and the result has the opposite sign, then an overflow has occurred.
The one exceptional case that cannot be detected by this method is the follow-
ing: if @ and b are n-bit words representing negative binary numbers (that is,
1 sign bit and n — 1 magnitude bits), then if |a |+ |b| = 2", an unused
word is generated (100---0) with a carry of 1 out of the sign bit. To detect this
overflow, we must check for the magnitude hits being all 0 and for the carry-out
bit value of 1.

To form the 28 complement representation of a number, first form the 1s
complement representation of it {including the sign bit in the scope of the 1s com-
plementation operation) and then add 1 to the low-order bit position. Another
method is to copy bits from the original number, starting at the low-order end
until the first 1 bit is encountered. After copying this first 1 bit, then the com-
plements of each of the remaining bits are copied. Thus to form the 2s complement
representation of +9, we have 01001 = 10110 4 00001 = 10111. Using the
alternate method, we would have

01001 = 1 (copy until first 1 is copied)
10111 (copy complements of remaining bits)

Again, in the 28 complement representation, positive numbers are identical to
positive numbers in sign-magnitude form or in 1s complement form. Negative
numbers are represented as the result of performing a 2s complementation of the
corresponding positive number of the same magnitude. Some examples of 2s com-

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4.5 DESIGN EXAMPLES USING BOOLEAN ALGEBRA 445

==

'Ij m.!’r.‘

N
A

¥i o

Xi¥i

Civ1

FIGURE 4-5.5 Circuit diagram for a half-adder module.

Again, we can use the circuit developed for the 1s complementer. In fact, that
circuit with one extra connection is the required half-adder circuit. This eircuit
is given in Fig. 4-5.5.

Half-adders are not of much use by themselves in actually performing
arithmetic operations because they cannot handle earry bits, and, in general,
carry bits must be processed when an addition is performed. However, half-
adders are very useful as components from which we can construct larger units
that do perform arithmetic operations, e.g., a full-adder.

A full-adder module accepts two input data bits and a carry bit from the
preceding full-adder module and generates the proper sum and carry bits.
Figure 4-5.6 illustrates such a module with its interface to other modules in the
iterative network. In tabular form, the requirements for a full-adder module are
given in Table 4-5.6. From this table, we can construct equations as follows:

8; = I + £ + I.‘ﬁia.‘ -+ Ty
Cit1 = TYiCs -+ -Tiﬁfﬂi -+ :::;y.-E.- + Xl iCy

These equations can be simplified or modified in such a manner that previous
circuits, such as half-adders, can be used to construct new circuits. Formally,

8 = I;Yic: + -’Eiyif-?i -+ E.’ﬁ.‘é:‘ + XY
= IE.'{I;";E.' + y‘-E.z} 'f— r;(y'.-E; + y[ﬂ{) (UEiIlg the distributive]EW)

= $:(yi D e;) + z(Fic: + yici) (from the definition of @)
=2;,® (1. ® &) [using Eq. (2)]
In-i Yis1 ""l Y -‘1]11’1—1
..,‘:";1 -.-"r';l fullgt:idtr -L |
module
$i41 § Si-1

FIGURE 4-5.6 Typical module interface in a full-adder.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

452 LATTICES AND BOOLEAN ALGEBRA

(1) z—y
(2) 24y
(3) —z+y

(b) Repeat part (a), performing subtraction by complementing and adding.

(¢) Repeat part (a), using 2s complement representation of signed numbers,

8 Design a gate network that will have as input two 2-bit numbers and present the 4-bit
product on four output terminals.

4 One form of an old puzzle requires a farmer (f) to transport a wolf (w), a goose (g),
and a sack of corn (¢) across a river, subject to the condition that if left unattended,
the wolf will eat the goose, or the goose will eat the corn. Let f = 0 indicate the
presence of the farmer on the west bank, f = 1 indicate his presence on the east bank,
and similarly for w, g, and c.

(a) Write the table of combinations deseribing a switching circuit which has a trans-
mission of 1 if and only if the farmer is in danger of losing the goose or corn, As-
sume that if an object is not on one side of the river, it must be on the other side,

(6) Design a two-level minimal circuit having the required transmission, and show
the circuit.

& Design a circuit which determines whether four signals on four mput lines represent
a valid BCD (Binary Coded Decimal) code word. The BCD code is given in Table
4-5.9.

Table 4-5.9
Inpuis
Decimal number a b c d
0 0 H 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
3] 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
Cutput Line number
signal
5o i
R T o) -bit 1, l
52
= .
-!"]_ - 3
I_Illm.-'lt.‘I 0 X3 binary 5e _)
55 _ "
= IL decoder 36 &
1
. T

FIGURE 4-5.13 A 3-bit binary decoder.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4566 LATTICES AND BOOLEAN ALGEBRA

delay element will be represented by ¢, and it will assume a value of 0 or 1, cor-
responding to the absence or presence of a carry bit. Since the present value at
the input of the unit delay at time ¢; is equal to its output at time ¢.,,, this input
18 called the next state of the delay element. A block-diagram representation of
the adder is given in Fig. 4-6.2, where an additional input line denoting the clock
gignal is also included. This additional input indicates that the serial adder is a
synchronous ecircuit and that all events oceur at discrete points in time,

We have given a very brief introduction to sequential circuits. In the next
subsection we formalize these ideas and proceed with the development of an al-
gorithm for determining a minimal equivalent sequential circuit for a given
sequential circuit.

4-6.2 Equivalence of Finite-state Machines

In the previous subsection the basic notions of sequential circuits were introdueced.
We now wish to formalize these concepts by defining a finite-state machine.
Furthermore, the important question of equivalent machines is discussed. In
particular, we shall define what is meant by equivalent machines and show that
for any given machine there exists a minimal equivalent machine. This reduced
machine is homomorphie to the given machine. An algorithm for obtaining a
minimal machine is developed. Finite-state machines have interesting algebraic
properties based on the theory of semigroups, but we will not be conecerned with
such properties in this subsection. Finite-state machines can do many things,
but there are certain operations such as multiplication which are beyond their
rang2. We now proceed to the definition of a finite-state machine.

Definition 4-6.1 A sequential machine, or finile-stale machine, is a system
N = {1, 8§, 0, §, \), where the finite sets I, S, and O are alphabets that
represent the input, state, and output symbols of the machine respectively.
The alphabets I and O are not necessarily disjoint, but I n 8 = On 8§ = .
We shall denote the alphabets by

I=la,a,...,a,} S = {30,8, ... 8m} 0= {og0,...,o]

8 is a mapping of § X I — § which denotes the next-state function, and
A is a mapping 8 X I — O which denotes the output function. We assume
that the machine is in an initial state so.

Formally, a finite-state machine therefore consists of three not necessarily
distinct alphabets and two functions. An abstract representation of a finite-state
machine is given in Fig. 4-6.3. The machine reads a sequence of input symbols
that are stored on an tnpul tape and stores a sequence of output symbols on an
output tape. Let the machine be in some state s; and reading the input symbol
a, under its reading head. The mapping X is then applied to s, and a,, thus causing
the writing head to record a symbol o, on the output tape. The function § then
causes the machine to go into state s;. The machine proceeds to read the next
input symbol and continues its operation until all symbols on the input tape
are processed. Observe that the tapes are allowed to move only in one direction.
In Fig. 4-6.3 the input symbols are processed from left to right. It should be

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

464 LATTICES AND BOOLEAN ALGEBRA

Definition 4-6.7 A finite-state machine M = {I, 8, 0, §, \) is said to be
reduced if and only if s; = g; implies that s; = s; for all states s;, 5; € S.

In other words, a reduced finite-state machine is one in which each state
is equivalent to itself and to no other. The partition of S in such a machine has
all its equivalence classes consisting of a single element.

We shall now show how to construet a reduced finite-state machine M’
which is equivalent to some given machine M. Let S in M be partitioned in a set
of equivalence classes [s] such that P = U [s]. Let the function ¢ be defined
on the partition P such that ¢([s]) = &, where 5" is an arbitrary fixed element
of [s], called a representative. It is clear that s" = sin M. Let 8" in M' be defined
as

8 = {¢'| (3s)[s € Sand ¢([s]) = s'J}

and let I’ = I and O’ = O; that is, both machines will have the same input and
output alphabets. The funetions &’ and A\’ are defined as follows:

¥(s',a) = ¢([3(s',0)])

and M(s,a) = A, a)
where 8’ is both in S and §’. Therefore the redueced machine is M’ = {I, §', O,
&, x'Y.

Applying this procedure to the machine given in Table 4-6.3 gives the equiv-
alent reduced machine in Table 4-6.4.

We shall now state a theorem without proof which shows the existence of
a reduced equivalent machine. '

Theorem 4-6.5 Let M = {I, 8, 0, 5,)) be a finite-state machine. Then
there exists an equivalent machine M’ with a set of states S’ such that
8" C S and M’ is reduced.

The idea of one finite-state machine simulating another is very important
in a number of applications. This notion is formalized in the next definition.

Definition 4-6.8 Ilet M = (I, 8, 0,8, A)and M’ = {I, §, 0, &, \') be
two finite-state machines. Let funetion ¢ be a mapping from S into S’. A
finite-stale homomorphism is defined as

$(8(s,a)) = &' (4(s), a)
foralla € I

A(s, a) = N (¢(s), a)
If ¢ is a one-one and onto function, then A ir isomorphic to M’.

Finite-state machines are often used in compilers where they usually per-
form the task of a scanner (See. 3-3). The machine in such a case does lower-
level syntax analysis such as identifving variable names, operators, constants,
ete. A machine which performs this scanning task is called an acceptor. In Chap. 6
we show that the set of languages that ean be recognized by an acceptor is exactly
the set of those languages that can be generated by a regular grammar.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

51 BASIC CONCEPTS OF GRAPH THEORY 469

5-1 BASIC CONCEPTS OF GRAPH THEORY

The terminology used in graph theory is not standard. It is not uncommon to
find several different terms being used as synonyms. This situation, however,
becomes more complicated when we find that a particular term is used by dif-
ferent authors to describe different concepts. This situation 1s natural because
of the diversity of the fields in which graph theory is applied. Wherever possible,
we shall indicate the alternative terms which are frequently used. We shall
generally select alternatives that are often used in the literature in computer
science.

In this section we shall define a graph as an abstract mathematical system.
However, in order to provide some motivation for the terminology used and also
to develop some intuitive feelings, we shall represent graphs diagrammatically.
Any such diagram will also be called a graph. Our definitions and terms are not
restricted to those graphs which can be represented by means of diagrams, even
though this may appear to be the case because these terms have strong associ-
ations with such a representation. We shall see later on that a diagrammatic
representation is only suitable in some very simple cases. Alternative methods
of representing graphs will also be discussed. After introducing the terminology,
we shall also disecuss some of the basie results and theorems of graph theory.

5-1.1 Basic Definitions

Reecall that in Chap. 2 a binary relation in a set V' was defined as a subset of
¥ 3 V. It was shown that such a relation could be represented at least in some
cases by a diagram which was called the graph of the relation. An alternative
method of representing a relation was given by means of a relation or an inet-
dence matrix. In this section we shall extend these ideas and in some ways gen-
eralize them.

We first consider several graphs which are represented by means of dia-
grams. Some of these graphs may be considered as graphs of certain relations,
but there are others which cannot be interpreted in this manner,

Consider the diagrams shown in Fig. 5-1.1. For our purpose here, these
diagrams represent graphs. Notice that every diagram eonsists of a set of points
which are shown by dots or ecircles and are sometimes labeled u, w, ..., or
1, 2, Also in every diagram certain pairs of such points are connected by
lines or ares. The other details, such as the geometry of the ares, their lengths,
the position of the points ete., are of no importance at present. Notice that every
arc starts at one point and ends at another point. A definition of the graph which
is essentially an abstract mathematical system will now be given. Such a mathe-
matical system is an abstraction of the graphs given in I'ig. 5-1.1.

Definition 5-1.1 A graph G = (V, E, ¢) consists of a nonempty set V
called the set of nodes (points, verlices) of the graph, E is said to be the set
of edges of the graph, and ¢ is a mapping from the set of edges F to a set
of ordered or unordered pairs of elements of V

We shall sasume throughout that both the sets V and E of a graph are
finite. It would be convenient to write a graph 7 as (V, £'), or simply as . Notice

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

476 ORAPH THEORY

)%

o
FIGURE 5-1.7

State the properties of these digraphs such as symmetry, transitivity, antisymmetry,

ete.

Show that the digraphs given in Fig. 5-1.5a and b are isomorphie.

Show that the digraphs given in Fig. 5-1.6a and b are isomorphic.

Show that the digraphs in Fig. 5-1.7 are not isomorphiec.

A simple digraph G = (V, E) is said to be complete if every node is adjacent to all

other nodes of the graph. Show that a complete digraph with n nodes has the maximum

number of edges viz., n{n— 1) edees, assuming that there are no loops.)

7 The complement of a simple digraph @ = (V, E) is the digraph G = (V, E') where
E =V X V — E. Find the complements of the graphs given in Prob. 2.

T - Lo

5-1.2 Paths, Reachability, and Connectedness

In this section we introduce some additional terminology assoeiated with a simple
digraph. During the course of our discussion we shall also indicate how the same
terminology and concepts can be extended to simple undirected graphs as well as
to multigraphs.

Let ¢ = (V, E) be a simple digraph. Consider a sequence of edges of G
such that the terminal node of any edge in the sequence is the initial node of the
next edge, if any, in the sequence. An example of such a sequence is

({ﬂin Hit)r {ﬂf-::r uil}: r ey {ﬂ'l'l—!:! vl‘i-—l)! {ﬂih-n Uiy >}

where it is assumed that all the nodes and edges appearing in the sequence are
in ¥ and E respectively. It 1s customary to write such a sequence as

(ﬂ{” Vigs » = oy Vinps [h'l]

Note that not all edges and nodes appearing in a sequence need be distinet. Also,
for a given graph any arbitrary set of nodes written in any order do not give a
sequence as required. In fact each node appearing in the sequence must be ad-
Jacent to the nodes appearing just before and after it in the sequence, except
in the ease of the first and last nodes.

Definition 5-1.5 Any sequence of edges of a digraph such that the ter-
minal node of any edge in the sequence is the initial node of the edge, if
any, appearing next in the sequence defines a path of the graph.

A path is said to traverse through the nodes appearing in the sequence, orig-

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

484 GHAPH THEORY

8 Given a simple digraph G = (V, E), under what condition is the eguation
d(v,) + dlg, v3) = d(n, ry)

satisfied for vy, va, and v3 € V7
4 Find the reachable sets of [vy, va}, |0y, vs}, and |5} for the digraph given in Fig.
5-1.14.
Find a node base for each of the digraphs given in Figs. 5-1.13 and 5-1.14.
Explain why no node in a node base is reachable from another node in the node base.
Prove that in an acyelie simple digraph a node base conzists of only those nodes whose
indegree is zero.
& For the digraphs given in Figs. 5-1.13 and 5-1.14, determine whether they are
strongly, weakly, or unilaterally connected.
g Show that a simple digraph is strongly connected iff there is a cycle in & which in-
cludes each node at least onece and no isolated node.
10 The diameter of a simple digraph G = (V, E) is given by &, where

~2 & O

é = maxd(u,»)
w, veV

Find the diameter of the digraphs given in Figs. 5-1.13 and 5-1.14.

11 Find the strong components of the digraph given in Fig. 5-1.14. Also find its unilateral
and weak components.

12 Bhow that every node and edge of a graph are contamned in exactly one weak com-
ponent.

5-1.3 Matrix Representation of Graphs

A diagrammatic representation of a graph has limited usefulness. I'urthermore,
such a representation is only possible when the number of nodes and edges is
reasonably small. In this subsection we shall present an alternative method of
representing graphs using matrices. Such a method of representation has several
advantages. It is easy to store and manipulate matrices and hence the graphs
represented by them in a computer. Well-known operations of matnx algebra
can be used to caleulate paths, eveles, and other characteristies of a graph.

Giiven a simple digraph ¢ = (V, &), 1t 18 necessary to assume some kind of
ordering of the nodes of the graph in the sense that a particular node is called a
first node, another a second node, and so on. Our matrix representation of ¢ de-
pends upon the ordering of the nodes.

Definition 5-1.12 Let ¢ = (V, £) be a simple digraph in which V =
vy, e, ..., 2,1 and the nodes are assumed to be ordered from » to v,. An
n X n matrix A whose elements a,; are given by

1 if (v, 0;) ¢ K
a;; =
0 otherwise

is called the adjacency matriz of the graph G.
Recall that the adjacency matrix is the same as the relation matrix or the

incideace matrix of the relation E in V. Any element of the adjacency matrix is
either 0 or 1. Any matrix whose elements are either 0 or 1 is called a bil malrize

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

488 ORAPH THEORY

length from #, to v;. In order to decide this, with the help of the adjacency matrix
we would have to consider all possible A" forr = 1, 2, This method is neither
practical nor necessary, as we shall show.

Recall that in a simple digraph with » nodes, the length of an elementary
path or eyele does not exceed n (see Theorem 5-1.1). Also for a path between
any two nodes one can obtain an elementary path by deleting certain parts of
the path which are cyeles. Similarly (for eycles), we can always obtain an ele-
mentary cyele from a given evele. If we are interested in determining whether
there exists a path from »; to », all we need to examine are the elementary paths
of length less than or equal to n — 1. In the case of v; = v, and the path iz a
cycle, we need to examine all possible elementary cycles of length less than or
equal to n. Such cyeles or paths are easily determined from the matrix B, where

Bi=A+ A+ A%+ ... + A

The element 1n the ith row and jth column of B, shows the number of paths of
length n or less which exist from »; to ¢;. If this element is nonzero, then it is clear
that »; 1s reachable from v,. Of course, in order to determine reachability, we need
to know the existence of a path, and not the number of paths between any two
nodes. In any case, the matrix B, furnishes the required information about the
reachability of any node of the graph from any other node.

Definition 5-1.13 ILet ¢ = (V, F) be asimple digraphin which | V| = n
and the nodes of ¢ are assumed fo be ordered. An n X n matrix P whose
elements are given by :

1 if there exists a path from ¢, to vy

Pii =
0 otherwise

1s called the path matriz (reachability matrir) of the graph .

Note that the path matrix onlv shows the presence or absence of at least
one path between a pair of points and also the presence or absence of a evele at
any node. It does not, however, show all the paths that may exist, In this sense
a path matrix does not give complete information about a graph as does the ad-
jacency matrix. The path matrix is important in its own right.

The path matrix can be calculated from the matrix B, by choosing p,; = 1
if the element in the 7th row and jth column of B, is nonzero and p;; = 0 other-
wise. We shall apply this method of calculating the path matrix to our sample
problem, whose graph is given in Fig. 5-1.15, The adjaceney matrix 4 = 4; and
its powers A2 A% A4 have already been calculated. We thus have 8; and the
path matrix P given by

(3 4 2 3 (1 1 1 1)

5 5 4 6 1 1 1 1
.B.;: IJ=

T 7 &7 11 1 1

3 2 1 2 1 1 1 1

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

494 GRAPH THEORY

malriz is given by
dy=oo if(w,v¢ E
dis =0 foralli=1,2, ...,n

dij=k where k is the smallest integer for which
ﬂ-;‘jm # 0

Determine the distance matrix of the digraph given in Fig. 51.17. What does d;; = 1
mean?

7 Bhow that a digraph (7 is strongly connected if all the entries of the distance matrix
except the diagonal entries are nonzero. How will you obtain the path matrix from a
distance matrix? How will you modify the diagonal entries?

8 Modify algorithm MINIM A so that all minimal paths are computed.

5-1.4 Trees

An important class of diagraphs called directed trees will be introduced in this
section along with the terminology associated with such trees. Trees are useful
in describing any structure which involves hierarchy. Familiar examples of such
structures are family trees, the decimal classification of books in a library, the
hierarchy of positions in an organization, an algebraic expression involving opera-
tions for which certain rules of precedence are prescribed, etc. We shall describe
here how trees can be represented by diagrams and other means. Representation
of trees in a computer is discussed in Sec. 5-2.1. Applications of trees to grammars
1s given in Sec. 5-3.1.

Definition 5-1.14 A direcied tree is an acyclie digraph which has one node
called its root with indegree 0, while all other nodes have indegree 1.

Note that every directed tree must have at least one node. An isolated
node is also a directed tree.

Definition 5-1.15 In a directed tree, any node which has outdegree 0 is
called a terminal node or a leaf; all other nodes are called branch nodes. The
level of any node is the length of its path from the root.

The level of the root of a directed tree is 0, while the level of any node is
equal to its distance from the root. Observe that all the paths in a directed tree
are elementary, and the length of a path from any node to another node, if such
a path exists, is the distance between the nodes, because a directed tree is acyelic.

Figure 5-1.18 shows three different diagrams of a directed tree. Several
other diagrams of the same tree can be drawn by choosing different relative posi-
tions of the nodes with respect to its root. The directed tree of our example has
two nodes at level 1, five nodes at level 2, and three nodes at level 3. Figure 5-1.18a
shows a natural way of representation, viz., the way a tree grows from its root
up and ending in leaves at different levels. Figure 5-1.18b shows the same tree
drawn upside down. This is a convenient way of drawing a directed tree and is
commonly used in the literature. Figure 5-1.18¢ differs from b in the order in
which the nodes appear at any level from left to right. According to our defini-

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

5-1 BASIC CONCEP™ OF GRAPH THEORY 499

represented by a string over the alphabet {0, 1}, the root being represented by
an empty string. Any son of a node u has a string which is prefixed by the string
of u. The string of any terminal node is not prefixed to the string of any other
node. The set of strings which correspond to terminal nodes form a prefix code.
Thus the prefix code of the binary tree in Fig. 5-1.21b is |000, 001, 01, 10, 110,
111}. A similar representation of nodes of a positional m-ary tree by means of
strings over an alphabet {0, 1,..., m — 1} is possible.

The string representation of the nodes of a positional binary tree immedi-
ately suggests a natural method of representing a binary tree in a computer. It is
sufficient for our purpose at this stage simply to recognize that such a natural
representation exists.

Binary trees are useful in several applications. We shall now show that
every tree can be uniquely represented by a binary tree, so that for the com-
puter representation of a tree it is possible to consider the representation of its

FIGURE 5-1.22

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

5-2 STORAGE REPRESENTATION AND MANIPULATION OF GRAPES 008

If a particular subtree is empty (i.e., whﬁnnnodehasnnlefturrightdmendanﬂ,
the traversal is performed by doing nothmg In other words, a null aubtrae i8
considered to be fully traversed when it is encountered.

If the words “left” and “right” are interchanged in the preceding defini-
tions, then we have three new trayersal methods which are called converse pre-
order, converse tnorder, and converse posiorder, respectively.

The preorder, inorder, and postorder traversals of the tree given in Fig.
5-2.1 will pru-ueég the nodes in th? following order:

ABCDEFGH (preorder) '
CBDAEGHF (inorder)
CDBHGFEA (postorder)

(The respective converse traversals would be AEFGHBDC, FHGEADBC, and
HGFEDCBA.) :
Although recursive algorithms would probably be the simplest to write
for the traversals of binary trees, we will formulate algorithms which are non-
recursive. Since in traversing a tree it is required to descend and subsequently
ascend parts of the tree, pointer information which will permit movement up
the tree must be temporarily stored. Observe that the structural information
that is already present in the tree permits downward movement from the root
of the tree. Because movement up the tree must be made in a reverse manner
from that taken in descending the tree, a stack is required to save pointer values
as the tree is traversed. We will now give an algorithm for traversing a tree in
preorder.

Algorithm PREORDER Given a binary tree whose root node address is given
by a variable T and whose node structure is the same as previously desecribed,
this algorithm traverses the tree in preorder. An auxiliary stack S is used, and
T'OP is the index of the top element of S. P is a temporary variable which denotes
where we are in the tree.

1 [Initialize] If T = NULL, then Exit (the tree has no root and there-
fore is not a proper binary tree) ; otherwise set P «— T and TOP « (.

2 [Visit node, stack right branch address, and go left] Process node P.
If RLINK(P) » NULL, then set TOP «— TOP + 1 and S[TOP]« RLINK(P).
Set P— LLINK(P).

8 [End of chain?] If P # NULL, then go to step 2.

4 [Unstack a right branch address] If TOP = 0, then Exit; otherwise
set P — S[TOP], TOP « TOP — 1, and go to step 2.

In the second and third steps of the algorithm, we visit and process a node.
The address of the right branch of such a node, if it exists, is stacked, and a chain
of left branches is followed until this chain ends. At this point, we enter step 4
and delete from the stack the address of the root node of the most recently en-
countered right subtree and process it according to steps 2 and 3. A trace of the
algorithm for the binary tree given in Fig. 5-2.1 appears+n Table 5-2.1, where
the rightmost element in the stack is considered to be its top element and the

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

32 STORAGE REPRESENTATION AND MANIPULATION OF GRAPHS OO7

in preorder, while the suffix form is generated by an inorder traversal of the
binary tree (not a postorder traversall).

As an application of binary trees, we will formulate an algorithm that will
maintain a tree-structured symbol table. (See Sec. 2-4.6.) One of the criteria
that a symbol table routine must meet is that table searching be performed
efficiently. This requirement originates in the compilation phase where many
references to the entries of a symbol table are made. The two required operations
that must be performed on a symbol table are insertion and “look-up,’” each of
which involves searching. A binary tree structure was chosen for two reasons.
The first reason is because if the symbol entries as encountered are randomly dis-
tributed according to lexicographic order, then table searching becomes approx-
imately equivalent to a binary search as long as the tree is maintained in lexico-
graphic order. Second, a binary tree structure is easily maintained in lexicographic
order (in the sense that only a few pointers need be changed).

For simplicity, we assume a relatively sophisticated system which allows
variable-length character strings to be used without much effort on the part of
the programmer to handle them. We further assume that the symbol table rou-
tine is used to create trees that are loeal to a block of program eode. This implies
that an attempt to insert a duplicate entry is an error. In a global context,
duplicate entries would be permitted as long as they were at different block
levels. In a sense, the symbol table is a set of trees, one for each block level.

A binary tree will be constructed whose typical node is of the form

[LLINK SYMBOLS INFO RLINK |

where LLINK and RLINK are pomter fields, SYMBOLS is the field for the
character string which is the identifier or variable name (note that string descrip-
tors might well be used here to allow fixed-length nodes, but it is assumed that this
use 1s clear to the user), and INFO is some set of fields containing additional
information about the identifier, such as its type. A node will be created by
the execution of the statement P «— NODZE where the address of the new node
18 stored in P.

Finally, it is assumed that prior to any use of the symbol table routine at
a particular block level, the appropriate tree head node is created with the
SYMBOLS field set to a value that is greater lexicographically than any valid
identifier. HEAD[n] will point to this node where n designates the nth block
level. Hence, the existence of an appropriate main routine which administers
to the creation of tree heads as a new block is entered and to the deletion of tree
heads as a block is exited, is assumed.

Because both the insertion and look-up operations involve many of the
same actions (e.g., searching), we will actually produce only one routine, TABLE,
and distinguish between insertion and look-up by the value of a global logical
variable, #LAG. On invoking algorithm TABLE, if FLAG is true, then the re-
quested operation is insertion; NAME and DATA contain the identifier name
and additional information respectively. If the insertion is suceessful, then FLAG
retains its original value; otherwise the value of FLAG is negated to indicate an
error (because the identifier is already present in the table at that level), and
an exit from the algorithm is made. On the other hand, if the algorithm is in-
voked with FLAG set to false, then the requested operation is lock-up. In this

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

5-2 BTORAGE REPRESENTATION AND MANIPULATION OF GRAPHS 511

ﬁ*—’icm € f EM

FIGURE 5-2.6 Storage representation of (a, (b, ¢}, d, (e, J, g)).

has a depth of 2. The depth of a list is the number of levels it contains. The ele-
ments a and d are at level 1, and b and ¢ are at level 2. The number of pairs of
parentheses surrounding an element indicates its level. The element d in the list
(a, (b, (¢, (d)))) has a level of 4.

Order and depth are more easily understood in terms of our storage repre
sentation, where order is indicated by horizontal arrows and depth by vertical
(downward-pointing) arrows. Thus, the list (a, (b, ¢), d, (e, f, g)) would be
represented by the storage structure in Fig. 5-2.6. In storage, several lists may
share common sublists. For example, the lists (a, (b, ¢), d) and (1, 5.2, (b, ¢))
could be represented as in IFig. 5-2.7.

The recursive list M, where M is (a, b, M), can be represented as shown
in Fig. 5-2.8. We would naturally use this storage representation where the
ecommon structure is shared rather than generating an infinite number of nodes
to correspond to an infinite graph, but great care must be taken when manipu-
lating such recursive structures in order to avoid programming oneself into an
infinite loop.

A list structure occurs quite frequently in the processing of informa-
tion, although it is not always evident. Consider a simple English sentence
which consists of a subject, verb, and objeet. Any such sentence can be inter-,
preted as a three-element list, whose elements can be atoms (single words)
or lists (word phrases). The following sentences and their corresponding list
representations are examples:

Man bites dog. = (Man, bites, dog)
The man bites the dog. = ((The, mau), bites, (the, dog))
The big man is biting the small dog. = ((The, big, man), (1s, biting), (the,

small, dog))
a T ——- m
T
/1
FIGURE 5-2.7 Two lists sharing a
common sublist. L[4 {s2[4+ " /]

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

O-3 SIMPLE PRECEDENCE GRAMMARs 517

where & is
(identifier) :: = (letter) | (identifier)(letter) | (identifier) (digit)
(letter) :i=a|b]|--- |y]|z
(digit) ::=0|1[---[8]9
The existence of the rule (identifier) :: = (letter) does not imply that (letter)

is a phrase since we cannot generate (digit)(identifier){digit) from the starting
symbol (identifier). What are the phrases of (letter) 1? A derivation for this

sentential form is
(identifier) = (identifier){digit) = (letter){digit) = (letter) 1

Therefore
(identifier) = (letter)(digit) and {(digit)=>1

y Consequently, 1 i1s a simple phrase. Another derivation for the given sentential
| form is

(identifier) = (identifier) (digit) = (identifier} 1 = {letter) 1
where
{(identifier) = (identifier) 1 and {identifier) = {letter)

Agaip, the only phrase which is also a simple phrase is (letter).
In the subsequent discussion the leftmost simple phrase of a sentential form
will be required. We therefore formulate the following definition.

Definition 5-3.2 The handle of a sentential form is its leftmost simple
phrase.

In the current example, we have two possible simple phrases, namely, (letter)
and 1, and since {letter) is the leftmost phrase, it is also the handle.

As previously discussed in See, 3-3.3, syntax trees are an important aid to
understanding the syntax'of a sentence. A syntax tree for a sentence of some
language has a distinguished node called its root which is labeled by the starting
symbol of the grammar. The leaf nodes of the syntax tree represent the terminal
symbols in the sentence being diagramed. All nonleaf nodes correspond to non-
terminal symbols. Each nonterminal node has a number of branches emanating
downward, each of which represents a symbol in the right side of the production
being applied at that point in the syntax tree.

The syntax tree corresponding to the following derivation of the sentence
¢l in grammar ¢, is given in Fig. 5-3.1.

(identifier}) = (identifier }{digit) = {letter){digit) = c(digit) = ¢l
Note that another possible derivation for the same sentence 1s
{identifier) = (identifier){digit) = (identifier) 1 = (letter) 1 = ¢l

and that this derivation has the same syntax tree as that given in ig. 5-3.1.
Therefore for each syntax tree there exists at least one derivation.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

522 GRAPH THEORY

If A — 8 is a rule of the grammar and ¢, € V7. Again the relation is easily ex-
tended to <> and <> where the relation ¢ =» ¢ may be read as “¢ right-produces

¢.” The relation <> specifies that there is exactly one = derivation. For example,
the leftmost and rightmost derivations for ¢ + ¢ % i in G, are
(expression) => (expression) + (expression)=> {term) + (expression)
=> {factor) + (expression) =7 + (expression)
=1+ {term) => ¢ + (term) % (factor)
= 1 + (factor) % (factor)=»{ + 7 % (factor)
=i 4k
and
{(expression) = (expression) -+ (expression) =» (expression) + (term)
=> (expression) + (term) % (factor)
= (expression) + (term) % 1
= {(expression) + (factor) % 12
=> (expression) + 7 % i => (term) + 7 % ¢
= (factor) + 1k i=2i+ 1% ¢
respectively. The leftmost and the rightmost derivations correspond to a left-to-
right and right-to-left top-down parse, respectively.
The general problem of parsing is to start with a string ¢ of terminal sym-
bols, for example, ¢ + ¢ % ¢, and to find a sequence of productions such that

(expression } = ¢. The bottom-up method (proceeding from left to right) attacks
the problem by first “reducing” the above string to

{(factor) 4+ 1 % 1
then reducing this string to

(term) + ¢ % 1
and then {expression) + 1 %k ¢
and {expression) + {factor) % ¢

ete., where a reduction i1s the opposite of a production. This process continues
until everything is reduced to {expression) or until it is shown that it cannot be
done. Note that the sequence of reductions is the reverse of the right canonical
derivation. In general, bottom-up parsing from left to right proceeds by right
reductions.

In a left-to-right bottom-up parse, the handle is to be reduced at each step
in the parse. The questions which arise are, How do we find the handle of a sen-
tential form and to what do we reduce it?

One obvious approach is merely to select one of the possible alternatives.
If a mistake i1s subsequently detected, then we must retrace our steps to the
location of the error and try some other alternative. This process is called “back-
up,” and it can be very time-consuming.

A more efficient solution involves looking at the econtext around the sub-

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

54 FAULT DETECTION IN COMBINATIONAL SWITCHING CIRCUITS

A—z
B— Azx)

Using only syntax trees, obtain as many of the precedence relations as possible.
6 Using the formal definition of precedence relations, obtain the precedence matrix for
Prob. 5. |
7 Prove Theorem 5-3.2.
8 Prove Theorem 5-3.3.
8 Prove Theorem 5-3.4.
10 Provethat -> = (BT« (=) ¢ (L*).
11 Using the parsing algorithm of the text and the grammar of Prob. 5, give a tree of

the parse for the strings y(zx)y, (((zz)z)z)y, y((22))2)y.
12 Formulate an algorithm and write a program that will obtain a precedence matrix.
18 Write a program to use the precedence matrix obtained in Prob. 12 and parse a string
according to the parsing algorithm of the text.
14 Can you obtain the precedence funections for the grammar of Prob. 5?
16 Is the fullowing grammar a simple nrecedence grammar? If not, why not?

E—a B—R
E—b B— (B)
E— (E+ E) R—E=E

5-4 FAULT DETECTION IN COMBINATIONAL SWITCHING CIRCUITS

The synthesis and analysis of combinational switching circuits were discussed
in the previous chapter. In this section, we discuss a different but equally im-
portant problem, fault detection and fault diagnosis. Fault detection is concerned
with determining whether a fault exists in a circuit. In fault diagnosis, one tries
to locate a specific fault in a system.

The diagnosis of faults in modern eomputing systems is becoming more
important as the complexity of such svstems increases. Rapid and effective
diagnosis of faults in computer svstems is desirable since onee these diagnoses are
In service, down time can be kept at a minimum.

The detection and diagnosis of faults in early computers were performed
by technmicians. Although these computers were physically very large, the num-
ber of components in them was rather small as compared to present eomputers,
and a skillful engineer could locate a fault in a reasonable period of time. With
the advent of transistors and integrated ecirceuits, the number of components in
a modern computer has greatly increased and fault detection and diagnosis have
become increasingly difficult tasks.

The logical conclusion is that if a computer 18 at all operational, 1t should
diagnose itself, or at worst another computer should be used to perform the
diagnosis.

In this section we shall consider a combinational circuit diagram to be a
directed graph whose nodes are the gates and whose edges are the connections
between gates. From this representation an algorithm will be given to generate
a fault table. The purpose of such a table is to be able to detect and more generally
diagnose faults. The algorithm will use eertain notions of relations such as their

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

ALSO FROM TATA McGRAW-HILL

ANTIA : NUMERICAL METHODS FOR SCIENTISTS
AND ENGINEERS

DAS : FUNDAMENTALS OF MATHEMATICAL
ANALYSIS

CODDINGTON : THEORY OF ORDINARY DIFFERENTIAL
EQUATIONS

RAO : LINEAR ALGEBRA

The McGraw-Hill Companies

fﬂ Tata McGraw-Hill
| Publishing Company Limited

7 West Patel Nagar, New Delhi 110 008

Visit our website at : www.tatamcgrawhill.com

