1.14.1. WOODWARD-FIESER RULES FOR CALCULATION OF λ_{max} FOR $\pi-\pi^*$ (TRANSITION) ABSORPTION BAND OF α , β -UNSATURATED CARBONYL COMPOUNDS : ENONES

We have discussed above that when a double bond is conjugated with a carbonyl group, it gives two absorption bands—an intense ($\in = 8,000-20,000$) absorption band in the region 220–250 nm due to π - π * transition and a weak ($\in = 50-100$) absorption in the region 310-330 nm due to n- π * transition. While the transition does not show this predictable manner by structural modification of the chromophore, n- π * transition does not show this predictable behaviour.

Woodward and Fieser examined the UV spectra of a number of α , β -unsaturated compounds in ethanol and formulated a set of empirical rules which help us to predict the λ_{max} of π - π * transition in an unknown compound. These rules are summarised in Table 1.6.

Solvent correction. Since π - π * absorption band is strongly affected by polarity of the solvent, therefore, to convert λ_{max} values obtained in other solvents to standard ethanol solvent, the following solvent corrections have been proposed.

Solvent	Correction	Solvent	Correction
Methanol	0	Cyclohexane	+ 11
Chloroform	+1	Dioxan	+ 5
Ether	+ 7	Water	021 o 7 -8
Hexane	+ 11	As a second	A desired to the second

TABLE 1.6. Rules for calculating the λ_{max} of π - π * (transition) absorption band of α , β -unsaturated carbonyl compounds (solvent ethanol).

ρα	δγβα			1810 U.S.
βĊ=ĊĊ= O	δ—Ċ=Ċ—Ċ=Ċ—Ċ= O	A DOMESTIN		- 10
Base values :				
(i) α, β-unsaturated acyc	215 nm			
(ii) α, β-unsaturated five	202 nm			
(iii) α, β-unsaturated ald	207 nm			
(iv) α, β-unsaturated aci	197 nm			
Increments:	The second section of the sect			
(i) Each alkyl group or r	ing residue	borat a		
Massa .	10 nm			
β	12 nm	46 12 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
γ and higher	18 nm	o yes to a		
(ii) Each double bond ex	30 nm	al bonyers	imi	
(iii) Each exocyclic doub	5 nm	en wit Johnson	ang ngeo milia a ta s	
(iv) Homoannular diene o	39 nm	all and and	HORYAR OL	
(i.e. two double bonds wh	nich are conjugated with C = O gr	roup lie in the s	same ring)	eroft gene
(v) Auxochromes:	Position	gnoth Paudts. Veilidens eans		HI LOMOS
	α	β	Lynnia	δ
—OH, Hydroxy	LES FOR CALCE mn 25 N O	30 nm	30 nm	50 nm
—OR, Alkoxy	35 nm	30 nm	17 nm	31 nm
$-OCOCH_3, Acetoxy \qquad \alpha = \beta = \gamma = \delta = 6 \text{ nm}$		AT WHITE RUT	Maria Telegal	
CI C	15 nm	12 nm	de i serreib	aveni W
and week reversion of the transform	[[[전기 및]] k 121명 보이 시민(방향성에는 문화중심) ;; :		MOLTH CLITCH	
Br maister out neigh	25 nm	o o nm		
Br mates 0.1 ang	ib m 25 nm	30 nm	Le Blumber	br.C. Hauh
—Br —NH ₂ (vi) solvent correction	th man the respect of a new party of the respect to	95 nm	te book p Kombis er i	variable

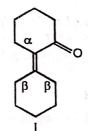
These rules are illustrated by the following examples.

Example 5. Calculate λ_{max} for the following compound

Solution. The given compound is an α , β -unsaturated ketone having two alkyl subtituents (i.e. methyl) at **\beta-position**.

$$CH_3 \xrightarrow{\beta \mid C} CH_3 \xrightarrow{\beta \mid C} CH_3$$
 Basic value for α, β-unsaturated acyclic ketone = 215 nm

Two alkyl substituents at β -position, (2 × 12)


Calculated \(\lambda_{max} \)

The observed value is 237 nm ($\epsilon_{max} = 12,500$)

Example 6. Calculate the λ_{max} for the following compounds

$$\bigcirc \bigcap_{I} \bigcirc_{II} \bigcirc_{II} \bigcirc_{IV} \bigcirc_{IV} \bigcirc_{V} \bigcirc_{V}$$

Solution. (a) For compound 1

Basic value = 215 nm

One α -ring residue (1 × 10) = 10 nm

VEARLY AND CROSS-CONJUGATED I

Two β -ring residues (2 × 12) = 24 nm (31 (ii) sturburths eliniw

One double bond exocyclic to two rings $(2 \times 5) = 10 \text{ nm}$

onger wavelongth with ngher in

Calculated $\lambda_{max} = 259 \text{ nm}$ Observed $\lambda_{max} = 256 \text{ nm}$

Linearly conjugated dienone ...

(b) For compound II

a cross-conjugated dienone contains a branched clummophoral Basic value for α , β -unsaturated acyclic ketone = 215 nm

One α -ring residue = 10 nm

One β -ring residue = 12 nm the longest waveledgib absorption band

Calculated $\lambda_{max} = 237 \text{ nm}$

(c) For compound III

Basic value for α , β -unsaturated six-membered ring ketone = 215 nm

One double bond extending conjugation = 30 nm

One double bond exocyclic to ring A = -5 nm

One β -ring residue = 12 nm

One γ-ring residue = 18 nm

One δ -ring residue = 18 nm

 \therefore Calculated $\lambda_{max} = 298 \text{ nm}$

(d) For compound IV

min 215 Basic value for α , β -unsaturated six-membered ring ketone = 215 nm One double bond extending conjugation = 30 nm

One homoannular diene component = 39 nm

One α -ring residue = 10 nm

One δ -ring residue = 18 nm

One double bond exocyclic to ring B = 5 nm

 \therefore Calculated $\lambda_{max} = 317 \text{ nm}$

Observed $\lambda_{max} = 319 \text{ nm}$

(e) For compound V

Basic value for α , β -unsaturated six-membered ring ketone = 215 nm

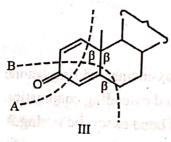
One α -OH substitution = 35 nm

Two β -ring residues (2 × 12) = 24 nm

 $\therefore \text{ Calculated } \lambda_{max} = 274 \text{ nm}$

1.14.2. LINEARLY AND CROSS-CONJUGATED ENONES

If the two or more double bonds lie only on one side of the keto group, it is said to be a linearly conjugated enone and if, on the other hand, one or more double bonds lie on either side of the keto group, it is said to be a cross-conjugated enone. For example, structure (I) represents a linearly conjugated dienone while structure (II) represents a cross-conjugated dienone.


Observed L. L hovesedQ

Linearly conjugated dienone

Cross-conjugated dienone

2.

Thus, a cross-conjugated dienone contains a branched chromophore. Such systems contain two overlapping α , β -unsaturated ketonic chromophores, each one of which will give its own π - π * absorption band with a high extinction coefficient. But due to band nature of the spectra, only that α , β -unsaturated ketonic chromophore which absorbs at longer wavelength with higher intensity is usually observed. In other words, in cross-conjugated systems, the longest wavelength absorption band is due to the most highly substituted simple conjugated system present. For example, consider the steroidal enones (III and IV)

Dienone (III) may be regarded to consist of two α , β -unsaturated chromophores A and B as shown by dotted lines. Whereas dienone A has only one β -substituent, dienone B has two β -substituents in addition to an exocyclic double bond. Therefore, chromophore B is expected to absorb at a longer wavelength and hence, for the purpose of calculating the λ_{max} , we consider the most highly conjugated system B.

Chromophore A

Basic value = 215 nm One β -ring residue = 12 nm \therefore Calculated $\lambda_{max} = 227$ nm

Chromophore B

Basic value = 215 nm Two β-ring residues, $(2 \times 12) = 24$ nm One exocyclic double bond = 5 nm ∴ Calculated $\lambda_{max} = 244$ nm

Similarly trienone (IV) can be considered to be made up of two α , β -unsaturated ketonic chromophores α , one β and one δ -ring residue, it is expected to absorb at a longer wavelength than chromophore α as

Chromophore A

Basic value = 215 nm
Two β-ring residues, $(2 \times 12) = 24$ nm
One exocyclic double bond = 5 nm $\therefore \text{ Calculated } \lambda_{max} = 244 \text{ nm}$

Chromophore B

Basic value = 215 nm

One double bond extending conjugation = 30 nm

One homoannular diene component = 39 nm

One α -ring residue = 10 nm

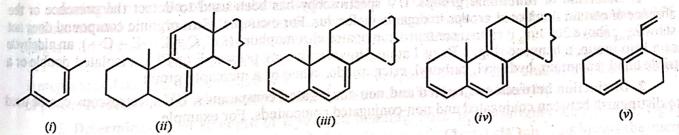
One β -ring residue = 12 nm

One δ -ring residue = 18 nm

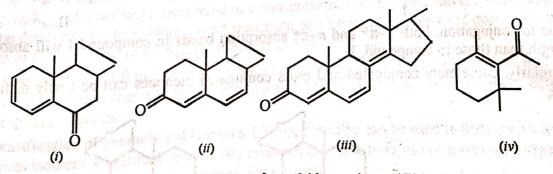
Calculated $\lambda_{max} = 324 \text{ nm}$

PROBLEMS FOR PRACTICE

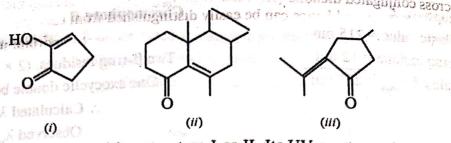
1. On the basis of Woodward-Fieser rules, calculate λ_{max} for the following compounds:


(i) Methyl vinyl ketone

(ii) 2-Cyclopentenone


(iii) 2-Methyl-1-acetylcyclopentene

(iv) 3, 4-Dimethylpent-3-en-2-one


2. Calculate the λ_{max} for the most intense band for the following dienes and polyenes.

3. The following enones have λ_{max} at 284 nm (ϵ = 28000), 315 nm (ϵ = 7000) and 348 nm (ϵ = 26500), 249 nm (ϵ = 13000) in ethanol. Which is which?

4. The following α , β -unsaturated ketones have λ_{max} 241 nm (ϵ = 4700) 249 nm (ϵ = 9500) and 259 nm (ϵ = 10790) in ethanol. Which is which?

5. α -Cyperone is expected to have either structure I or II. Its UV spectrum shows λ_{max} at 252 nm. Predict its actual structure.

ANSWERS

- 1. (i) 215 nm (ii) 214 nm (iii) 249 nm (iv) 249 nm
- 2. (i) 273 nm (ii) 244 nm (iii) 313 nm (iv) 353 nm (v) 274 nm
- 3. (i) 315 nm (ii) 284 nm (iii) 348 nm (iv) 249 nm
- 4. (i) 249 nm (ii) 254 nm and (iii) 241 nm.
 - 5. Actual structure is I since II will absorb at 239 nm.